+0  
 
-2
73
2
avatar+107 

The perpendicular bisector of the line segment connecting the points (-3,8) and (-5,4) has an equation of the form y=mx+b. Find m+b.

Note: The perpendicular bisector of the line segment \(\overline{AB}\) is the line that passes through the midpoint of \(\overline{AB}\) and is perpendicular to \(\overline{AB}\).

 Jul 2, 2020
 #1
avatar
-1

Midpoint = (-4,6)

Slope = (4 - 8)/(-3 - 5) = 1/2

Perpendicular bisector: y - 6 = -2(x + 4) = -2x - 8

==> y = -2x - 2

m + b = -4

 Jul 2, 2020
 #2
avatar+25 
0

wrong

 Jul 2, 2020

9 Online Users

avatar
avatar