+0  
 
0
62
3
avatar

 

Find 1/(a - 1) + 1/(b - 1) where a and b are the roots of the quadratic equation 2x^2-7x+2 = x^2-11x+1.

 Oct 17, 2022
 #1
avatar
0

1/(a - 1) + 1/(b - 1) = -13/2.

 Oct 17, 2022
 #2
avatar+2448 
+1

\({1 \over (a-1)} + {1 \over (b-1)} = {(b-1) \over (a-1)(b-1)} + {(a-1) \over (a-1)(b-1)} \)

\({(b-1) \over (a-1)(b-1)} + {(a-1) \over (a-1)(b-1)} = {a + b -2 \over {ab−a−b+1}}\)

\({a + b -2 \over {ab−a−b+1}} = {a + b -2 \over {ab−(a+b)+1}}\)

\(2x^2-7x+2 = x^2-11x+1\)

\(x^2 + 4x + 1 = 0\)

\(a + b = -{b \over a} = -4\)

\(ab = {c \over a} = 1\)

\({(-4) - 2 \over (1) - (-4) + 1} = {-6 \over 6} = \color{brown}\boxed{-1}\)

.
 Oct 17, 2022
 #3
avatar
0

Your answer is wrong.  -13/2 is correct.

Guest Oct 19, 2022

23 Online Users