+0  
 
0
111
2
avatar+115 

How many numbers (up to a maximum of four digit numbers) can be made from the digits 2, 3, 4, and 5 if no digit can be repeated?

I don't think I've gone over this yet in my course's material so I really have no clue how to even start answering this problem. Any help would be appreciated, as always...

Aleguan  Feb 15, 2018
edited by Aleguan  Feb 15, 2018
 #1
avatar+87293 
+2

1 dgit numbers  = 4

2 digit numbers  = take any 2 of 4 numbers and permute them  =  P(4,2)  = 12

3 digit numbers  =   take any 3 of  4 numbers and permute them = P(4,3)   = 24

4 digit numbers  = permute all 4 numbers =  4!  =  24

 

So.....

 

4  + 12  +  2(24)    =     64 numbers 

 

 

cool cool cool  

CPhill  Feb 15, 2018
 #2
avatar
+1

1- permutations{(2,3,4,5), 1}

{2} | {3} | {4} | {5} (total: 4)

 

2 -permutations{(2,3,4,5), 2}

{2, 3} | {2, 4} | {2, 5} | {3, 2} | {3, 4} | {3, 5} | {4, 2} | {4, 3} | {4, 5} | {5, 2} | {5, 3} | {5, 4} (total: 12)

 

3-permutations{(2,3,4,5), 3}

{2, 3, 4} | {2, 3, 5} | {2, 4, 3} | {2, 4, 5} | {2, 5, 3} | {2, 5, 4} | {3, 2, 4} | {3, 2, 5} | {3, 4, 2} | {3, 4, 5} | {3, 5, 2} | {3, 5, 4} | {4, 2, 3} | {4, 2, 5} | {4, 3, 2} | {4, 3, 5} | {4, 5, 2} | {4, 5, 3} | {5, 2, 3} | {5, 2, 4} | {5, 3, 2} | {5, 3, 4} | {5, 4, 2} | {5, 4, 3} (total: 24)

 

4-permutations{(2,3,4,5), 4}

{2, 3, 4, 5} | {2, 3, 5, 4} | {2, 4, 3, 5} | {2, 4, 5, 3} | {2, 5, 3, 4} | {2, 5, 4, 3} | {3, 2, 4, 5} | {3, 2, 5, 4} | {3, 4, 2, 5} | {3, 4, 5, 2} | {3, 5, 2, 4} | {3, 5, 4, 2} | {4, 2, 3, 5} | {4, 2, 5, 3} | {4, 3, 2, 5} | {4, 3, 5, 2} | {4, 5, 2, 3} | {4, 5, 3, 2} | {5, 2, 3, 4} | {5, 2, 4, 3} | {5, 3, 2, 4} | {5, 3, 4, 2} | {5, 4, 2, 3} | {5, 4, 3, 2} (total: 24)

 

Total =4 + 12 + 24 + 24 = 64 - permutations.

Guest Feb 15, 2018

11 Online Users

avatar

New Privacy Policy

We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive information about your use of our website.
For more information: our cookie policy and privacy policy.