We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive pseudonymised information about your use of our website. cookie policy and privacy policy.
 
+0  
 
0
393
2
avatar+564 

I was helping my brother with a problem and was stumped at this problem.

 

The solution contains a fraction +/- another fraction with a radical numerator. What is this fraction with a radical numerator?

 

Solve for x:  \(2x^2+3x-8=0\)

 Nov 2, 2015

Best Answer 

 #1
avatar+23575 
+35

Solve for x: \(2x^2+3x-8=0\)

 

\(\begin{array}{rcl} \boxed{~ \begin{array}{rcl} ax^2+bx+c &=& 0\\ x &=& {-b \pm \sqrt{b^2-4ac} \over 2a}\\ \end{array} ~}\\ 2x^2+3x-8&=&0 \qquad a= 2 \quad b = 3 \quad c = -8\\ x &=& {-b \pm \sqrt{b^2-4ac} \over 2a}\\ x &=& {-3 \pm \sqrt{3^2-4\cdot 2 \cdot(-8)} \over 2\cdot 2}\\ x &=& {-3 \pm \sqrt{9+ 64} \over 4}\\ x &=& {-3 \pm \sqrt{73} \over 4}\\ \hline x_1 &=& {-3 + \sqrt{73} \over 4}\\ x_1 &=&1.3860009363\\ \hline x_2 &=& {-3 - \sqrt{73} \over 4}\\ x_2 &=& -2.8860009363 \end{array}\)

 

laugh

 Nov 2, 2015
 #1
avatar+23575 
+35
Best Answer

Solve for x: \(2x^2+3x-8=0\)

 

\(\begin{array}{rcl} \boxed{~ \begin{array}{rcl} ax^2+bx+c &=& 0\\ x &=& {-b \pm \sqrt{b^2-4ac} \over 2a}\\ \end{array} ~}\\ 2x^2+3x-8&=&0 \qquad a= 2 \quad b = 3 \quad c = -8\\ x &=& {-b \pm \sqrt{b^2-4ac} \over 2a}\\ x &=& {-3 \pm \sqrt{3^2-4\cdot 2 \cdot(-8)} \over 2\cdot 2}\\ x &=& {-3 \pm \sqrt{9+ 64} \over 4}\\ x &=& {-3 \pm \sqrt{73} \over 4}\\ \hline x_1 &=& {-3 + \sqrt{73} \over 4}\\ x_1 &=&1.3860009363\\ \hline x_2 &=& {-3 - \sqrt{73} \over 4}\\ x_2 &=& -2.8860009363 \end{array}\)

 

laugh

heureka Nov 2, 2015
 #2
avatar+564 
0

Thank you! 

 

I forgot all about that equation .-.

 Nov 2, 2015

11 Online Users

avatar
avatar