+0  
 
+1
102
1
avatar

Rewrite the expression $6j^2 - 4j + 12$ in the form $c(j + p)^2 + q$, where $c$, $p$, and $q$ are constants. What is $\frac{q}{p}$?

Guest Jan 22, 2018

Best Answer 

 #1
avatar+92164 
+2

 

Rewrite the expression \( 6j^2 - 4j + 12\) in the form \( c(j + p)^2 + q\), where c, p, and q are constants. What is \(\frac{q}{p}\)

 

\(​​​​6j^2-4j+12\\ =6(j^2-\frac{2}{3}j)+12\\ =6(j^2-\frac{2}{3}j+\frac{1}{9})+12-\frac{6}{9}\\ =6(j-\frac{1}{3})^2+11\frac{1}{3}\\ =6(j-\frac{1}{3})^2+11\frac{1}{3}\\ =6(j-\frac{1}{3})^2+\frac{34}{3}\\~\\ p=\frac{-1}{3}\qquad q=\frac{34}{3}\\ \frac{q}{p}=\frac{34}{3}\div\frac{-1}{3}\\ \frac{q}{p}=\frac{34}{3}\times\frac{3}{-1}=-34\\ \)

Melody  Jan 22, 2018
Sort: 

1+0 Answers

 #1
avatar+92164 
+2
Best Answer

 

Rewrite the expression \( 6j^2 - 4j + 12\) in the form \( c(j + p)^2 + q\), where c, p, and q are constants. What is \(\frac{q}{p}\)

 

\(​​​​6j^2-4j+12\\ =6(j^2-\frac{2}{3}j)+12\\ =6(j^2-\frac{2}{3}j+\frac{1}{9})+12-\frac{6}{9}\\ =6(j-\frac{1}{3})^2+11\frac{1}{3}\\ =6(j-\frac{1}{3})^2+11\frac{1}{3}\\ =6(j-\frac{1}{3})^2+\frac{34}{3}\\~\\ p=\frac{-1}{3}\qquad q=\frac{34}{3}\\ \frac{q}{p}=\frac{34}{3}\div\frac{-1}{3}\\ \frac{q}{p}=\frac{34}{3}\times\frac{3}{-1}=-34\\ \)

Melody  Jan 22, 2018

24 Online Users

avatar
avatar
avatar
We use cookies to personalise content and ads, to provide social media features and to analyse our traffic. We also share information about your use of our site with our social media, advertising and analytics partners.  See details