+0  
 
+1
154
1
avatar

Rewrite the expression $6j^2 - 4j + 12$ in the form $c(j + p)^2 + q$, where $c$, $p$, and $q$ are constants. What is $\frac{q}{p}$?

Guest Jan 22, 2018

Best Answer 

 #1
avatar+92624 
+2

 

Rewrite the expression \( 6j^2 - 4j + 12\) in the form \( c(j + p)^2 + q\), where c, p, and q are constants. What is \(\frac{q}{p}\)

 

\(​​​​6j^2-4j+12\\ =6(j^2-\frac{2}{3}j)+12\\ =6(j^2-\frac{2}{3}j+\frac{1}{9})+12-\frac{6}{9}\\ =6(j-\frac{1}{3})^2+11\frac{1}{3}\\ =6(j-\frac{1}{3})^2+11\frac{1}{3}\\ =6(j-\frac{1}{3})^2+\frac{34}{3}\\~\\ p=\frac{-1}{3}\qquad q=\frac{34}{3}\\ \frac{q}{p}=\frac{34}{3}\div\frac{-1}{3}\\ \frac{q}{p}=\frac{34}{3}\times\frac{3}{-1}=-34\\ \)

Melody  Jan 22, 2018
 #1
avatar+92624 
+2
Best Answer

 

Rewrite the expression \( 6j^2 - 4j + 12\) in the form \( c(j + p)^2 + q\), where c, p, and q are constants. What is \(\frac{q}{p}\)

 

\(​​​​6j^2-4j+12\\ =6(j^2-\frac{2}{3}j)+12\\ =6(j^2-\frac{2}{3}j+\frac{1}{9})+12-\frac{6}{9}\\ =6(j-\frac{1}{3})^2+11\frac{1}{3}\\ =6(j-\frac{1}{3})^2+11\frac{1}{3}\\ =6(j-\frac{1}{3})^2+\frac{34}{3}\\~\\ p=\frac{-1}{3}\qquad q=\frac{34}{3}\\ \frac{q}{p}=\frac{34}{3}\div\frac{-1}{3}\\ \frac{q}{p}=\frac{34}{3}\times\frac{3}{-1}=-34\\ \)

Melody  Jan 22, 2018

7 Online Users

New Privacy Policy

We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive information about your use of our website.
For more information: our cookie policy and privacy policy.