+0  
 
0
456
2
avatar

What is the value of 4^(10)*8^(20)*16^(30)? Express your answer in the form a^b, where a and b are positive integers such that a is the least possible positive integer.

 Feb 16, 2021
 #1
avatar+6 
+2

4^(10)*8^(20)*16^(30)

= (2^2)^10 * (2^3)^20 * (2^4)^30

= 2^(2 * 10) * 2^(3 * 20) * 2^(4 * 30)

= 2^20 * 2^60 * 2^120

= 2^(20 + 60 + 120)

= 2^200

 

This is the first time I have posted an answer here. Please let me know if I'm doing this right :)

 Feb 16, 2021
 #2
avatar+118690 
+1

Hi Teja2,

It is nice to meet you.

It is easier for me to answer myself than it is for me to check your answer.

So that is the only reason I am answering here

 

\(4^{10}*8^{20}*16^{30}\\ =2^{20}*2^{60}*2^{120}\\ =2^{200}\)

 

 

there you go, if you got it wrong then I did too.   wink

 

Give yourself a point!

 Feb 16, 2021

5 Online Users

avatar