-6,-24,-96,...
\(\begin{array}{rcl} a_1 &=& - 6 \qquad a_2 = -24 \qquad a_3 = -96\\ \end{array}\\ \begin{array}{rcl} \frac{a_2}{a_1} = \frac{-24}{- 6} &=& 4 \\ \frac{a_3}{a_2} = \frac{-96}{- 24} &=& 4 \\ \text{Geometric Sequence } r &=& 4 \\\\ \text{To find any term of a geometric sequence: } \boxed{~ \begin{array}{rcl} a_n &=& a_1\cdot r^{n-1} \end{array} ~}\\ a_1= -6\cdot 4^0 &=& -6\cdot 1 = -6 \\ a_2= -6\cdot 4^1 &=& -6\cdot 4 = -24 \\ a_3= -6\cdot 4^2 &=& -6\cdot 16 = -96 \\ a_4= -6\cdot 4^3 &=& -6\cdot 64 = -384 \\ a_5= -6\cdot 4^4 &=& -6\cdot 256 = -1536 \\ a_6= -6\cdot 4^5 &=& -6\cdot 1024 = -6144 \\ \cdots \\\\ \text{ or }a_1 &=& -6\\ \boxed{~ \begin{array}{rcl} a_n &=& a_{n-1}\cdot r \end{array} ~}\\ a_2 &=& -6 \cdot 4 = -24 \\ a_3 &=& -24 \cdot 4 = -96 \\ a_4 &=& -96 \cdot 4 = -384 \\ a_5 &=& -384 \cdot 4 = -1536 \\ a_6 &=& -1536 \cdot 4 = -6144 \\ \cdots \end{array}\)
-6,-24,-96, -384, -1,536, -6,144, -24,576.........Just multiply each term by 4.
-6,-24,-96,...
\(\begin{array}{rcl} a_1 &=& - 6 \qquad a_2 = -24 \qquad a_3 = -96\\ \end{array}\\ \begin{array}{rcl} \frac{a_2}{a_1} = \frac{-24}{- 6} &=& 4 \\ \frac{a_3}{a_2} = \frac{-96}{- 24} &=& 4 \\ \text{Geometric Sequence } r &=& 4 \\\\ \text{To find any term of a geometric sequence: } \boxed{~ \begin{array}{rcl} a_n &=& a_1\cdot r^{n-1} \end{array} ~}\\ a_1= -6\cdot 4^0 &=& -6\cdot 1 = -6 \\ a_2= -6\cdot 4^1 &=& -6\cdot 4 = -24 \\ a_3= -6\cdot 4^2 &=& -6\cdot 16 = -96 \\ a_4= -6\cdot 4^3 &=& -6\cdot 64 = -384 \\ a_5= -6\cdot 4^4 &=& -6\cdot 256 = -1536 \\ a_6= -6\cdot 4^5 &=& -6\cdot 1024 = -6144 \\ \cdots \\\\ \text{ or }a_1 &=& -6\\ \boxed{~ \begin{array}{rcl} a_n &=& a_{n-1}\cdot r \end{array} ~}\\ a_2 &=& -6 \cdot 4 = -24 \\ a_3 &=& -24 \cdot 4 = -96 \\ a_4 &=& -96 \cdot 4 = -384 \\ a_5 &=& -384 \cdot 4 = -1536 \\ a_6 &=& -1536 \cdot 4 = -6144 \\ \cdots \end{array}\)