+0  
 
0
37
4
avatar

Find the smallest positve $n$ such that:

\begin{align*}
N &\equiv 6 \pmod{12}, \\
N &\equiv 6 \pmod{18}, \\
N &\equiv 6 \pmod{24}, \\
N &\equiv 6 \pmod{30}, \\
N &\equiv 6 \pmod{60}.
\end{align*}

Guest May 11, 2018

Best Answer 

 #3
avatar
+1

Melody:

The smallest N is 6. The LCM of[12, 18, 24, 30, 60] = 360. Therefore:

N = 360k + 6, where k = 0, 1, 2, 3.........etc.

Guest May 11, 2018
Sort: 

4+0 Answers

 #1
avatar+646 
+1

Hey Guest!

 

\(\begin{align*} N &\equiv 6 \pmod{12}, \\ N &\equiv 6 \pmod{18}, \\ N &\equiv 6 \pmod{24}, \\ N &\equiv 6 \pmod{30}, \\ N &\equiv 6 \pmod{60}. \end{align*}\)

 

LCM [12, 18, 24, 30, 60] = 360

 

N = 360k + 6. 

 

6 is your answer.

 

Guest is right, my previous answer was wrong. 

 

I hope this helped,

 

gavin

GYanggg  May 11, 2018
edited by GYanggg  May 12, 2018
 #2
avatar+92458 
+1

 

 

The smallest N is 6, the rest of my answer was incorrect. 

Melody  May 11, 2018
edited by Melody  May 12, 2018
 #3
avatar
+1
Best Answer

Melody:

The smallest N is 6. The LCM of[12, 18, 24, 30, 60] = 360. Therefore:

N = 360k + 6, where k = 0, 1, 2, 3.........etc.

Guest May 11, 2018
 #4
avatar+92458 
0

Yes you are right .... 

I appologise for my incorrect answer :)

Melody  May 12, 2018

4 Online Users

New Privacy Policy (May 2018)
We use cookies to personalise content and ads, to provide social media features and to analyse our traffic. We also share information about your use of our site with our social media, advertising and analytics partners.  Privacy Policy