+0  
 
0
253
3
avatar

how i can get the "r"

Guest May 31, 2017

Best Answer 

 #1
avatar+7266 
+3

\(\frac{E}{e}=\frac{R+r}{R-r}\)

Multiply both sides of the equation by  (R - r)  .

\((R-r)\,*\,\frac{E}{e}=R+r\)

Distribute the   \( \frac{E}{e} \)  .

\(R*\frac{E}{e}\,-\,r*\frac{E}{e}=R+r\)

Add   \( r*\frac{E}{e} \)   to both sides of the equation.

\(R*\frac{E}{e}=R+r+r*\frac{E}{e}\)

Subtract R from both sides of the equation.

\(R*\frac{E}{e}-R=r+r*\frac{E}{e}\)

Factor out an   r   on the right side.

\(R*\frac{E}{e}-R=r(1+\frac{E}{e})\)

Divide both sides of the equation by   \( (1+\frac{E}{e}) \)  .

\(\frac{R*\frac{E}{e}-R}{1+\frac{E}{e}}=r\)

hectictar  May 31, 2017
 #1
avatar+7266 
+3
Best Answer

\(\frac{E}{e}=\frac{R+r}{R-r}\)

Multiply both sides of the equation by  (R - r)  .

\((R-r)\,*\,\frac{E}{e}=R+r\)

Distribute the   \( \frac{E}{e} \)  .

\(R*\frac{E}{e}\,-\,r*\frac{E}{e}=R+r\)

Add   \( r*\frac{E}{e} \)   to both sides of the equation.

\(R*\frac{E}{e}=R+r+r*\frac{E}{e}\)

Subtract R from both sides of the equation.

\(R*\frac{E}{e}-R=r+r*\frac{E}{e}\)

Factor out an   r   on the right side.

\(R*\frac{E}{e}-R=r(1+\frac{E}{e})\)

Divide both sides of the equation by   \( (1+\frac{E}{e}) \)  .

\(\frac{R*\frac{E}{e}-R}{1+\frac{E}{e}}=r\)

hectictar  May 31, 2017
 #2
avatar+93356 
0

Good work Hectictar :)

 

There is no way I could read this question, it was just too small.

Melody  Jun 1, 2017
 #3
avatar
0

Solve for r:
E/e = (r + R)/(R - r)

E/e = (r + R)/(R - r) is equivalent to (r + R)/(R - r) = E/e:
(r + R)/(R - r) = E/e

Cross multiply:
e (r + R) = E (R - r)

Expand out terms of the left hand side:
e r + e R = E (R - r)

Expand out terms of the right hand side:
e r + e R = E R - E r

Subtract e R - E r from both sides:
r (E + e) = E R - e R

Divide both sides by E + e:
Answer: | r = (E R - e R)/(E + e)=R[E - e] / [E + e]

Guest Jun 1, 2017

46 Online Users

New Privacy Policy

We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive information about your use of our website.
For more information: our cookie policy and privacy policy.