We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive pseudonymised information about your use of our website. cookie policy and privacy policy.
 
+0  
 
0
692
1
avatar

how do you get rid of the bottom? [(x^3-2x)-(a^3-2a)]/(x-a)

 Jan 14, 2016

Best Answer 

 #1
avatar+23299 
+15

how do you get rid of the bottom? [(x^3-2x)-(a^3-2a)]/(x-a)

 

\(\begin{array}{rcl} \frac{ (x^3-2x)-(a^3-2a) } {x-a} &=& \frac{ x^3-2x-a^3+2a } {x-a}\\ &=& \frac{ x^3-a^3-2x+2a } {x-a}\\ &=& \frac{ x^3-a^3-2(x-a) } {x-a}\\ &=& \frac{ x^3-a^3 }{x-a} - 2\cdot( \frac{ x-a } {x-a} ) \\ &=& \frac{ x^3-a^3 }{x-a} - 2\\ \end{array}\\ \boxed{~ \text{Difference of two cubes:}\\ \begin{array}{rcl} x^3-a^3 &=& (x-a)(x^2+x\cdot a+a^2) \end{array} ~}\\ \begin{array}{rcl} \frac{ (x^3-2x)-(a^3-2a) } {x-a} &=& \frac{ x^3-a^3 }{x-a} - 2\\ &=&\frac{ (x-a)(x^2+x\cdot a+a^2) }{x-a} - 2\\ &=& x^2+x\cdot a+a^2 - 2\\ \end{array} \)

 

laugh

 Jan 14, 2016
 #1
avatar+23299 
+15
Best Answer

how do you get rid of the bottom? [(x^3-2x)-(a^3-2a)]/(x-a)

 

\(\begin{array}{rcl} \frac{ (x^3-2x)-(a^3-2a) } {x-a} &=& \frac{ x^3-2x-a^3+2a } {x-a}\\ &=& \frac{ x^3-a^3-2x+2a } {x-a}\\ &=& \frac{ x^3-a^3-2(x-a) } {x-a}\\ &=& \frac{ x^3-a^3 }{x-a} - 2\cdot( \frac{ x-a } {x-a} ) \\ &=& \frac{ x^3-a^3 }{x-a} - 2\\ \end{array}\\ \boxed{~ \text{Difference of two cubes:}\\ \begin{array}{rcl} x^3-a^3 &=& (x-a)(x^2+x\cdot a+a^2) \end{array} ~}\\ \begin{array}{rcl} \frac{ (x^3-2x)-(a^3-2a) } {x-a} &=& \frac{ x^3-a^3 }{x-a} - 2\\ &=&\frac{ (x-a)(x^2+x\cdot a+a^2) }{x-a} - 2\\ &=& x^2+x\cdot a+a^2 - 2\\ \end{array} \)

 

laugh

heureka Jan 14, 2016

7 Online Users

avatar