We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive pseudonymised information about your use of our website. cookie policy and privacy policy.
 
+0  
 
0
155
1
avatar

Let u, v and w be vectors satisfying

 

u*v=3, u*w=4, v*w=5.

 

Then what are 

 

(u+2v)*w, (w-u)*v, (3v-2w)*u

 

equal to? Enter the list in the order above

 Jul 6, 2019

Best Answer 

 #1
avatar+23510 
+2

Let u, v and w be vectors satisfying

\(u*v=3, u*w=4, v*w=5\).

Then what are 

\((u+2v)*w, (w-u)*v, (3v-2w)*u\)

equal to?

 

\(\begin{array}{|rcll|} \hline && \mathbf{ (u+2v)*w} \\ &=& u*w+2v*w \\ &=& 4+ 2*5 \\ &=& \mathbf{14} \\ \hline && \mathbf{(w-u)*v} \\ &=& w*v-u*v \\ &=& 5 -3 \\ &=& \mathbf{2} \\ \hline && \mathbf{(3v-2w)*u} \\ &=& 3v*u-2w*u \\ &=& 3*3-2*4 \\ &=& \mathbf{1} \\ \hline \end{array}\)

 

laugh

 Jul 6, 2019
 #1
avatar+23510 
+2
Best Answer

Let u, v and w be vectors satisfying

\(u*v=3, u*w=4, v*w=5\).

Then what are 

\((u+2v)*w, (w-u)*v, (3v-2w)*u\)

equal to?

 

\(\begin{array}{|rcll|} \hline && \mathbf{ (u+2v)*w} \\ &=& u*w+2v*w \\ &=& 4+ 2*5 \\ &=& \mathbf{14} \\ \hline && \mathbf{(w-u)*v} \\ &=& w*v-u*v \\ &=& 5 -3 \\ &=& \mathbf{2} \\ \hline && \mathbf{(3v-2w)*u} \\ &=& 3v*u-2w*u \\ &=& 3*3-2*4 \\ &=& \mathbf{1} \\ \hline \end{array}\)

 

laugh

heureka Jul 6, 2019

28 Online Users

avatar
avatar
avatar