+0  
 
0
286
1
avatar

Let u, v and w be vectors satisfying

 

u*v=3, u*w=4, v*w=5.

 

Then what are 

 

(u+2v)*w, (w-u)*v, (3v-2w)*u

 

equal to? Enter the list in the order above

 Jul 6, 2019

Best Answer 

 #1
avatar+25528 
+2

Let u, v and w be vectors satisfying

\(u*v=3, u*w=4, v*w=5\).

Then what are 

\((u+2v)*w, (w-u)*v, (3v-2w)*u\)

equal to?

 

\(\begin{array}{|rcll|} \hline && \mathbf{ (u+2v)*w} \\ &=& u*w+2v*w \\ &=& 4+ 2*5 \\ &=& \mathbf{14} \\ \hline && \mathbf{(w-u)*v} \\ &=& w*v-u*v \\ &=& 5 -3 \\ &=& \mathbf{2} \\ \hline && \mathbf{(3v-2w)*u} \\ &=& 3v*u-2w*u \\ &=& 3*3-2*4 \\ &=& \mathbf{1} \\ \hline \end{array}\)

 

laugh

 Jul 6, 2019
 #1
avatar+25528 
+2
Best Answer

Let u, v and w be vectors satisfying

\(u*v=3, u*w=4, v*w=5\).

Then what are 

\((u+2v)*w, (w-u)*v, (3v-2w)*u\)

equal to?

 

\(\begin{array}{|rcll|} \hline && \mathbf{ (u+2v)*w} \\ &=& u*w+2v*w \\ &=& 4+ 2*5 \\ &=& \mathbf{14} \\ \hline && \mathbf{(w-u)*v} \\ &=& w*v-u*v \\ &=& 5 -3 \\ &=& \mathbf{2} \\ \hline && \mathbf{(3v-2w)*u} \\ &=& 3v*u-2w*u \\ &=& 3*3-2*4 \\ &=& \mathbf{1} \\ \hline \end{array}\)

 

laugh

heureka Jul 6, 2019

26 Online Users

avatar
avatar
avatar
avatar