+0  
 
0
91
1
avatar

sec^6(x)[sec(x)tan(x)] -sec^4(x)[sec(x)tan(x)] = sec^5(x)tan^3(x)


thanks.

Guest Jun 4, 2017
Sort: 

1+0 Answers

 #1
avatar+4694 
+1

sec6(x) sec(x) tan(x)  -  sec4(x) sec(x) tan(x)

 

=  sec7(x) tan(x)   -   sec5(x) tan(x)               Factor out   sec5(x) tan(x)   .

 

=  sec5(x) tan(x) * ( sec2(x)  -  1 )                 Rewrite secant as 1/cosine

 

= sec5(x) tan(x) * ( 1/cos2(x)  -  1 )               Get a common denominator and combine the fractions.

 

= sec5(x) tan(x) * ( 1/cos2(x)  -  cos2(x)/cos2(x) )

 

= sec5(x) tan(x) * ( [ 1 -  cos2(x) ] /cos2(x) )    Rewite   1 - cos2(x)   as   sin2(x)

 

= sec5(x) tan(x) * ( sin2(x) /cos2(x) )

 

= sec5(x) tan(x) * tan2(x)

 

= sec5(x) tan3(x)

hectictar  Jun 4, 2017

5 Online Users

avatar
We use cookies to personalise content and ads, to provide social media features and to analyse our traffic. We also share information about your use of our site with our social media, advertising and analytics partners.  See details