Link:https://web2.0calc.com/questions/loooong-time-no-see
Seeing that no one did my integrals, I will reveal answers,
1)
∫tan3θsecθdθ√tan2θ+2=∫(sec2θ−1)(secθtanθdθ)√sec2θ+1u=secθdu=secθtanθdθ=∫u2−1√u2+1duu=tanϕdu=sec2ϕdϕ=∫tan2ϕ−1secϕdϕ=∫secϕdϕ−2∫cosϕdϕ=ln|secϕ+tanϕ|−2sinϕ+C=ln|√u2+1+u|−2u√u2+1+C=ln|√tan2θ+2+secθ|−2secθ√tan2θ+2+C
2)
∫sec2θ(cosθ−sinθ)2√1+sin2θdθ=∫(cosθ−sinθ)2(cos2θ−sin2θ)(sinθ+cosθ)dθ=∫(cosθ−sinθ)(cosθ−sinθ)(cosθ−sinθ)(sinθ+cosθ)(sinθ+cosθ)dθ=∫(cosθ−sinθ)(sinθ+cosθ)2dθu=sinθ+cosθdu=(cosθ−sinθ)dθ=∫u−2du=−u−1+C=−1sinθ+cosθ+C
3)
∫√cotx−√tanxdx=∫√cosx√sinx−√sinx√cosxdx=∫cosx−sinx√sinxcosxdx=√2∫cosx−sinx√sin2xdx=√2∫cosx−sinx√(sinx+cosx)2−1dxu=sinx+cosxdu=(cosx−sinx)dx=√2∫du√u2−1=√2cosh−1u+C=√2cosh−1(sinx+cosx)+C
4) This is a special one made by me, and is too hard for anyone.
You need to know the derivatve and second derivative of x^x to do this integral.
∫xx+1(lnx+1)2−xxdx=∫x(xx(lnx+1)2−xx−1)dxu=xdv=(xx(lnx+1)2−xx−1)dxdu=dxv=xx(lnx+1)=xx+1(lnx+1)−∫xx(lnx+1)dx=xx+1(lnx+1)−xx+C
5) From YT channel "blackpenredpen". Thank him for teaching us how to do 5) and 6).
∫√tanhxdxu=√tanhxu2=tanhx2udu=sech2xdxdx=2u1−u4du=∫2u21−u4du=∫11−u2−11+u2du=tanh−1u−tan−1u+C=tanh−1(√tanhx)−tan−1(√tanhx)+C
6) Also from "blackpenredpen".
∫3√tanxdxu=3√tanx3u2du=sec2xdx=3∫u31+u6dut=u2=32∫t1+t3dt=−12∫dt1+t+12∫t+1t2−t+1I don't show steps for this for space=−12ln|1+tan2/3x|+14|tan4/3x−tan2/3x+1|+√32arctan(2tan2/3x−1√3)+C
7)
∫1+sinθ+cosθ1−sinθ+cosθdθu=tanθ2dθ=21+u2dusinθ=2u1+u2cosθ=1−u21+u2=∫1+u2+2u+1−u21+u2−2u+1−u2⋅2du1+u2=2∫u+11−u⋅du1+u2=∫2uu2+1du−2∫1u−1=ln|u2+1|−2ln|u−1|+C=2ln|secθ2|−2ln|tanθ2−1|+C
8) Actually this is the easiest among all 9 integral I provided.
∫x3√x8+1dxu=x4du=4x3dx=14∫du√u2+1=14sinh−1u+C=14sinh−1(x4)+C
9) Uses the result of 3) and integral of sqrt tan x.
Know that: ∫√tanxdx=1√2arctan(√tanx−√cotx√2)−1√2tanh−1(√tanx+√cotx√2)+C
So:
∫√cotxdx=∫(√cotx−√tanx)dx+∫√tanxdx=√2cosh−1(sinx+cosx)−1√2tanh−1(√tanx+√cotx√2)+1√2arctan(√tanx−√cotx√2)+C
Hello Max: Can you prove the following:
1/3 + 2/3^2 + 3/3^3 + 4/3^4 + 5/3^5 +............+k/3^k =3/4
I cannot prove it properly, but I can try to show you the sum converges to 3/4 by partial sums.
S(1) = 1/3 = 0.333...
S(2) = 1/3 + 2/9 = 5/9 = 0.555....
S(3) = 1/3 + 2/9 + 1/9 = 2/3 = 0.666......
S(4) = 1/3 + 2/9 + 1/9 + 4/81 = 58/81 =0.716....
S(5) = 58/81 + 5/243 = 179/243 = 0.74.....
You can see that the partial sum including 5 terms is already very near to 3/4 and it is converging, just by considering S(2) - S(1), S(3) - S(2), .... etc.