If $p(x) = x^4 - 3x + 2$, then find the coefficient of the $x^3$ term in the polynomial $(p(x))^3$.
If $p(x) = x^4 - 3x + 2$, then find the coefficient of the $x^3$ term in the polynomial $(p(x))^3$.
[ p(x] ^2 = (x^4 - 3x + 2) ( x^4 - 3x + 2) =
x^8 - 3x^5 + 2x^4
-3x^4 + 9x^2 - 6x
+2x^4 -6x + 4
_____________________________
x^8 - 3x^5 + x^4 + 9x^2 - 12x + 4
And
[p(x)]^2 * [p(x) ] = [p(x)] ^3 =
[x^8 - 3x^5 + x^4 + 9x^2 - 12x + 4] * [ x^4 - 3x + 2 ]
The x^3 term will be 9x^2 * -3x = - 27x^3
So.....the coefficient is -27