+0  
 
0
192
1
avatar

whats the nth term of 2,8,18,32

Guest Feb 22, 2017

Best Answer 

 #1
avatar+19603 
+25

whats the nth term of 2,8,18,32

 

\(\small{ \begin{array}{lrrrrrrrrrr} & {\color{red}d_0 = 2} && 8 && 18 && 32 && 50 && \cdots \\ \text{1. Difference } && {\color{red}d_1 = 6} && 10 && 14 && 18 && \cdots \\ \text{2. Difference } &&& {\color{red}d_2 = 4} && 4 && 4 && \cdots \\ \end{array} }\)

 

 

\(\boxed{~ \begin{array}{rcl} a_n &=& \dbinom{n-1}{0}\cdot {\color{red}d_0 } + \dbinom{n-1}{1}\cdot {\color{red}d_1 } + \dbinom{n-1}{2}\cdot {\color{red}d_2 } \end{array} ~}\)

 

\(\begin{array}{|rcll|} \hline a_n &=& \dbinom{n-1}{0}\cdot {\color{red} 2 } + \dbinom{n-1}{1}\cdot {\color{red} 6 } + \dbinom{n-1}{2}\cdot {\color{red} 4 } \\\\ && \binom{n-1}{0} = 1 \\ && \binom{n-1}{1} = n-1 \\ && \binom{n-1}{2} = \left( \frac{n-1}{2} \right) \cdot \left( \frac{n-2}{1} \right)\\\\ a_n &=& {\color{red} 2 } + (n-1)\cdot {\color{red} 6 } + \left( \frac{n-1}{2} \right) \cdot (n-2) \cdot {\color{red} 4 } \\ &=& {\color{red} 2 } + (n-1)\cdot {\color{red} 6 } + (n-1) \cdot (n-2) \cdot {\color{red} 2 } \\ &=& 2 + 6n-6 + (2n-2) \cdot (n-2) \\ &=& -4 + 6n + 2n^2-4n-2n+4 \\ \mathbf{a_n} & \mathbf{=} & \mathbf{2n^2} \\ \hline \end{array}\)

 

Example:

\(\begin{array}{|rclcl|} \hline a_1 &=& 2\cdot 1^2 &=& 2 \\ a_2 &=& 2\cdot 2^2 &=& 8 \\ a_3 &=& 2\cdot 3^2 &=& 18 \\ a_4 &=& 2\cdot 4^2 &=& 32 \\ a_5 &=& 2\cdot 5^2 &=& 50 \\ \dots \\ \mathbf{a_n} &\mathbf{=}& \mathbf{2\cdot n^2} \\ \hline \end{array}\)

 

laugh

heureka  Feb 22, 2017
 #1
avatar+19603 
+25
Best Answer

whats the nth term of 2,8,18,32

 

\(\small{ \begin{array}{lrrrrrrrrrr} & {\color{red}d_0 = 2} && 8 && 18 && 32 && 50 && \cdots \\ \text{1. Difference } && {\color{red}d_1 = 6} && 10 && 14 && 18 && \cdots \\ \text{2. Difference } &&& {\color{red}d_2 = 4} && 4 && 4 && \cdots \\ \end{array} }\)

 

 

\(\boxed{~ \begin{array}{rcl} a_n &=& \dbinom{n-1}{0}\cdot {\color{red}d_0 } + \dbinom{n-1}{1}\cdot {\color{red}d_1 } + \dbinom{n-1}{2}\cdot {\color{red}d_2 } \end{array} ~}\)

 

\(\begin{array}{|rcll|} \hline a_n &=& \dbinom{n-1}{0}\cdot {\color{red} 2 } + \dbinom{n-1}{1}\cdot {\color{red} 6 } + \dbinom{n-1}{2}\cdot {\color{red} 4 } \\\\ && \binom{n-1}{0} = 1 \\ && \binom{n-1}{1} = n-1 \\ && \binom{n-1}{2} = \left( \frac{n-1}{2} \right) \cdot \left( \frac{n-2}{1} \right)\\\\ a_n &=& {\color{red} 2 } + (n-1)\cdot {\color{red} 6 } + \left( \frac{n-1}{2} \right) \cdot (n-2) \cdot {\color{red} 4 } \\ &=& {\color{red} 2 } + (n-1)\cdot {\color{red} 6 } + (n-1) \cdot (n-2) \cdot {\color{red} 2 } \\ &=& 2 + 6n-6 + (2n-2) \cdot (n-2) \\ &=& -4 + 6n + 2n^2-4n-2n+4 \\ \mathbf{a_n} & \mathbf{=} & \mathbf{2n^2} \\ \hline \end{array}\)

 

Example:

\(\begin{array}{|rclcl|} \hline a_1 &=& 2\cdot 1^2 &=& 2 \\ a_2 &=& 2\cdot 2^2 &=& 8 \\ a_3 &=& 2\cdot 3^2 &=& 18 \\ a_4 &=& 2\cdot 4^2 &=& 32 \\ a_5 &=& 2\cdot 5^2 &=& 50 \\ \dots \\ \mathbf{a_n} &\mathbf{=}& \mathbf{2\cdot n^2} \\ \hline \end{array}\)

 

laugh

heureka  Feb 22, 2017

9 Online Users

avatar

New Privacy Policy

We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive information about your use of our website.
For more information: our cookie policy and privacy policy.