+0  
 
0
133
2
avatar+217 

1. Find all residues $a$ such that $a$ is its own inverse modulo $317$. 
(Your answer should be a list of integers greater than 0 and less than $317$ separated by commas.)

 

2. The inverse of $a$ modulo 39 is $b$. What is the inverse of $4a$ modulo 39 in terms of $b$?
Give your answer as an expression in terms of $b$.

 

3. Let $x$ and $y$ be integers satisfying $41x+53y=12$. Find the residue of $x$ modulo 53.
(Express your answer as an integer from 0 to 52.)

 

4. Find the sum of all positive rational numbers that are less than 5, and that have a denominator of 30 when written in lowest terms.

yasbib555  Jul 30, 2018
 #1
avatar+20595 
+1

3.

Let x and y be integers satisfying 41x+53y=12.
Find the residue of x modulo 53.
(Express your answer as an integer from 0 to 52.)

 

\(\small{ \begin{array}{|rcl|cl|} \hline 41x+53y &=& 12 \quad |\quad \cdot (-1) \\ -41x-53y &=& -12 \\ -41x &=& -12 +53y \\ \\ \hline \\ -41x &\equiv & -12 \pmod{53} \quad |\quad : (-41) \\\\ x &\equiv & \dfrac{-12}{-41} \pmod{53} \\\\ x &\equiv & \dfrac{12}{41} \pmod{53} \\\\ x &\equiv & 12\cdot 41^{-1} \pmod{53} && 41^{-1} \pmod{53} \quad | \quad \gcd(41,53)=1 \\\\ && &\equiv & 41^{\phi(53)-1} \quad | \quad \phi(53)= 52 \\\\ && &\equiv & 41^{52-1} \pmod{53} \\\\ && &\equiv & 41^{51} \pmod{53} \\\\ && &\equiv & 22 \pmod{53} \\\\ x &\equiv & 12\cdot 22 \pmod{53} \\\\ x &\equiv & 264 \pmod{53} \\\\ \mathbf{x} & \mathbf{\equiv} & \mathbf{52 \pmod{53}} \\ \hline \end{array} }\)

 

Proof:

\(\begin{array}{|rclr|} \hline 41x+53y &=& 12 \quad & | \quad \pmod{53} \\ 41x \pmod{53}+53y \pmod{53} &=& 12 \pmod{53} \quad & | \quad x \equiv 52 \pmod{53} \\ 41\cdot52 \pmod{53}+\underbrace{53y}_{\equiv 0\pmod{53} } \pmod{53} &=& 12 \pmod{53} \\ 41\cdot52 \pmod{53}+0 &=& 12 \pmod{53} \\ 2132 \pmod{53} &=& 12 \pmod{53} \\ 12 \pmod{53} &=& 12 \pmod{53}\ \checkmark\\ \hline \end{array} \)

 

laugh

heureka  Jul 31, 2018
 #2
avatar+20595 
0

2.
The inverse of a modulo 39 is b.
What is the inverse of 4a modulo 39 in terms of b?
Give your answer as an expression in terms of b.

 

\(\begin{array}{|rcl|cl|} \hline 4a(4a)^{-1} &\equiv & 1 \pmod{39} \quad |\quad : (4a) \\\\ (4a)^{-1} &\equiv & \dfrac{1}{4a} \pmod{39} \\\\ (4a)^{-1} &\equiv & 4^{-1}a^{-1} \pmod{39} \quad | \quad a^{-1} = b \\\\ (4a)^{-1} &\equiv & 4^{-1} b \pmod{39} && 4^{-1} \pmod{39} \quad | \quad \gcd(4,39)=1 \\\\ && &\equiv & 4^{\phi(39)-1} \quad | \quad \phi(39)= 24 \\\\ && &\equiv & 4^{24-1} \pmod{39} \\\\ && &\equiv & 4^{23} \pmod{39} \\\\ && &\equiv & 10 \pmod{39} \\\\ \mathbf{(4a)^{-1} } & \mathbf{\equiv} & \mathbf{10 b \pmod{39} } \\ \hline \end{array}\)

 

laugh

heureka  Jul 31, 2018

24 Online Users

avatar
avatar
avatar

New Privacy Policy

We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive information about your use of our website.
For more information: our cookie policy and privacy policy.