Loading [MathJax]/jax/output/SVG/jax.js
 
+0  
 
+3
19
2
avatar+54 

1. Find all integers, 0n<163 such that n is its own inverse modulo 163

 

2. The inverse of a modulo 44  is b. What is the inverse of 9a modulo 44  in terms of b?

 

3. Let x and y be integers. If x and y satisfy, then find the residue of x modulo 72.

 

These problems are tough for me so any help would be appreciated...

 Aug 18, 2024
 #1
avatar+821 
-3

Here is the solution to problem 2:

 

Given that b is the inverse of a modulo 44, we have the relationship:

 

ab1(mod44)

 

We need to find the inverse of 9a modulo 44 in terms of b. Let the inverse of 9a modulo 44 be x. This means:

 

(9a)x1(mod44)

 

We can factor out the a:

 

9(ax)1(mod44)

 

Since ab1(mod44), we replace ax with b:

 

9b1(mod44)

 

Thus, x=9b is the inverse of 9a modulo 44.

 

So, the inverse of 9a modulo 44 in terms of b is 9b.

 Aug 18, 2024

4 Online Users