You have a total supply of $1000$ pieces of candy, and an empty vat. You also have a machine that can add exactly $5$ pieces of candy per scoop to the vat, and another machine that can remove exactly $3$ pieces of candy with a different scoop from the vat. When these two machines are done, there is only one piece of candy left in the vat. What is the smallest possible number of times the the first machine added candy to the vat?
You have a total supply of $1000$ pieces of candy, and an empty vat. You also have a machine that can add exactly $5$ pieces of candy per scoop to the vat, and another machine that can remove exactly $3$ pieces of candy with a different scoop from the vat. When these two machines are done, there is only one piece of candy left in the vat. What is the smallest possible number of times the the first machine added candy to the vat?
Let the 1st machine cycle two times to add 10 pieces
Let the 2nd machine cycle three times to remove 9 pieces
1 piece remains
.