+0  
 
0
4
1
avatar+441 

What is the smallest prime divisor of 5^{19} + 7^{13} + 23?

 Nov 22, 2024
 #1
avatar+1279 
0

 

What is the smallest prime divisor of 5^{19} + 7^{13} + 23?    

 

 23  =  ends with a 3    

519  =  ends with a 5    

713  =  ends with a 7     (see below)

 

Whatever the sum of the three numbers is, it ends with a 5.    

Since the sum ends with a 5, the smallest prime divisor is 5.    

 

70 = 1         74 = 2,401         78 = 5,764,801    

71 = 7         75 = 16,807       79 = 40,353,607    

72 = 49       76 = 117,649     710 = 282,475,249    

73 = 373     77 = 823,543     711 = 1,977,326,743    

 

In the value of 7n as n is raised to successive exponents, the     

units digit cycles 1, 7, 9, 3, repeatedly, so 713 ends with a 7.    

.    

 Nov 22, 2024

1 Online Users