+0  
 
0
48
3
avatar

What is the ones digit of 1^2009 + 2^2009 + 3^2009 + ... + 100^2009?

 Dec 1, 2021
 #1
avatar
0

[1^2009 + 2^2009 + 3^2009 + ... + 100^2009] mod 10^10 ==7532998500 - these are the last 10 digits.

 Dec 2, 2021
 #2
avatar
0

 

What is the ones digit of 1^2009 + 2^2009 + 3^2009 + ... + 100^2009?  

 

0 (zero) ... Once you get a zero into the units position – and 102009 is the first place it will be introduced – that zero stays there no matter how many times, or by what, you multiply it.  

.

 Dec 2, 2021
 #3
avatar
0

  Too late to edit.  Disregard reasoning. 

  The question says 1^2009 + 2^2009 + 3^2009 etc., but 

  my feeble mind saw 1^2009 x 2^2009 x 3^2009 

.

Guest Dec 2, 2021

9 Online Users

avatar