+0  
 
0
30
1
avatar

As n ranges over the positive integers, what is the maximum possible value for the greatest common divisor of 11n+3 and 6n+7?

 Jun 29, 2022
 #1
avatar+2275 
+1

Use Euclidean's Algorithm as follows: 

 

\(11n + 3 \div 6n+7 = 1 \ \text{remainder} \ 5n -4\)

\(6n + 7 \div 5n - 4 = 1 \ \text{remainder} \ n + 11\)

\(5n - 4 \div n + 11 = 5 \ \text{remainder} \ -59\)

\(\gcd(n + 11, 59)\)

 

So, the maximum value for the GCD is \(\color{brown}\boxed{59}\), and occurs at \(n = 48\)

 Jun 29, 2022

15 Online Users

avatar