+0  
 
0
84
1
avatar

What is the product of the two smallest prime factors of 2^{100} - 1?

 May 26, 2021
 #1
avatar+26213 
+1

What is the product of the two smallest prime factors of \(2^{100} - 1\)?


First prime factor 2 ?
\(2^{100} - 1\) is an odd number so 2 is no prime factor in \(2^{100} - 1\)

 

next prime factor 3 ?
If 3 is a prime factor in \(2^{100} - 1\), then \(2^{100} - 1 \equiv 0 \pmod{3}\)
\(\begin{array}{|rcll|} \hline 2^{100} - 1 &\equiv& 0 \pmod{3} \quad ? \quad | \quad 2 \equiv -1 \pmod{3} \\ (-1)^{100} - 1 &\equiv& 0 \pmod{3} \quad ? \\ 1-1 &\equiv& 0 \pmod{3} \quad ? \\ 0&\equiv& 0 \pmod{3}~ \checkmark \quad | \quad {\color{red}3} ~\text{is a prime factor in}~ 2^{100} - 1 \\ \hline \end{array}\)

 

next prime factor 5 ?
If 5 is a prime factor oin \(2^{100} - 1\), then \(2^{100} - 1 \equiv 0 \pmod{5}\)
\(\begin{array}{|rcll|} \hline 2^{100} - 1 &\equiv& 0 \pmod{5} \quad ? \\ 2^{2*50} - 1 &\equiv& 0 \pmod{5} \quad ? \\ \left(2^2\right)^{50} - 1 &\equiv& 0 \pmod{5} \quad ? \quad | \quad 2^2=4 \equiv -1 \pmod{5} \\ (-1)^{50} - 1 &\equiv& 0 \pmod{5} \quad ? \\ 1-1 &\equiv& 0 \pmod{5} \quad ? \\ 0&\equiv& 0 \pmod{5} ~ \checkmark \quad | \quad {\color{red}5} ~\text{is a prime factor in}~ 2^{100} - 1 \\ \hline \end{array}\)

 

\(3*5 = 15\)

 

The product of the two smallest prime factors of \(2^{100} - 1\) is 15

 

laugh

 May 26, 2021
edited by heureka  May 26, 2021
edited by heureka  May 26, 2021

24 Online Users

avatar