Processing math: 100%
 
+0  
 
0
25
2
avatar+28 

Given that p7 is a prime number, evaluate1121+2131+3141++(p2)1(p1)1(modp).

 Jun 11, 2024
 #1
avatar+135 
0

We can rewrite this as 11×2+12×3+13×4+...+1(p2)×(p1). All of these terms are in the form of 1n(n+1), so let's first try to simplify that.

1n(n+1)

1+nnn(n+1)

1+nn(n+1)nn(n+1)

1n1n+1

 

Now, we can rewrite all of out fractions as (1112)+(1213)+(1314)+...+(1p21p1)

We can finally simplify this to 11p1 or p2p1, which is the final answer.

 

 

You could also solve this by induction, because you could notice that 12+12×3=2/3 and that  11×2+12×3+13×4=3/4.

 Jun 11, 2024

0 Online Users