+0  
 
0
927
1
avatar

octagon with radius of 1.4m calculate the width of each side

 Jun 21, 2014

Best Answer 

 #1
avatar+33661 
+5

Consider the octagon to be made up of 8 triangles each of which look like the image below:

oct

Angle β is (180-45)/2 = 67.5°

Use the sin rule to get s

s/sin(45°) = 1.4/sin(67.5°)

$${\mathtt{s}} = {\frac{{\mathtt{1.4}}{\mathtt{\,\times\,}}\underset{\,\,\,\,^{\textcolor[rgb]{0.66,0.66,0.66}{360^\circ}}}{{sin}}{\left({\mathtt{45}}^\circ\right)}}{\underset{\,\,\,\,^{\textcolor[rgb]{0.66,0.66,0.66}{360^\circ}}}{{sin}}{\left({\mathtt{67.5}}^\circ\right)}}} \Rightarrow {\mathtt{s}} = {\mathtt{1.071\: \!513\: \!610\: \!623\: \!269\: \!6}}$$ 

s ≈ 1.07m

 Jun 21, 2014
 #1
avatar+33661 
+5
Best Answer

Consider the octagon to be made up of 8 triangles each of which look like the image below:

oct

Angle β is (180-45)/2 = 67.5°

Use the sin rule to get s

s/sin(45°) = 1.4/sin(67.5°)

$${\mathtt{s}} = {\frac{{\mathtt{1.4}}{\mathtt{\,\times\,}}\underset{\,\,\,\,^{\textcolor[rgb]{0.66,0.66,0.66}{360^\circ}}}{{sin}}{\left({\mathtt{45}}^\circ\right)}}{\underset{\,\,\,\,^{\textcolor[rgb]{0.66,0.66,0.66}{360^\circ}}}{{sin}}{\left({\mathtt{67.5}}^\circ\right)}}} \Rightarrow {\mathtt{s}} = {\mathtt{1.071\: \!513\: \!610\: \!623\: \!269\: \!6}}$$ 

s ≈ 1.07m

Alan Jun 21, 2014

0 Online Users