+0  
 
0
686
2
avatar

"Given that f(x)=(  2*x^(3/2) - 3*x^(-3/2)  )^2+5, x>0,

a) find, to 3 significant figures, the value of x for which f(x)=5."

I got something entirely different than the book says is the answer (book's answer: 1.14), please help?

 

and it's c1 so no calcs allowed, i dont get how you do this without a calculator to begin with

 Apr 15, 2016
edited by Guest  Apr 15, 2016
 #1
avatar+23254 
+5

f(x)  =  ( 2x3/2 - 3x-3/2 )2 + 5

f(x)  =  5                                             ===>     ( 2x3/2 - 3x-3/2 )2 + 5  =  5    

Subtract 5 from both sides                 ===>     ( 2x3/2 - 3x-3/2 )  =  0

Find the square root of both sides     ===>     2x3/2 - 3x-3/2   =  0

Add  3x-3/2  to both sides                   ===>     2x3/2  =  3x-3/2   

Change the right side                        ===>     2x3/2  =  3 / x3/2   

Multiply both sides by x3/2                  ===>     2x3  =  3                     (add exponents 3/2 + 3/2  =  6/2  =  3)

Divide both sides by 2                        ===>     x3  =  3/2

Take the cube root                             ===>     x  =  1.447...

 Apr 15, 2016
 #2
avatar
0

Solve for x:
5+(2 x^(3/2)-3/x^(3/2))^2 = 5

Bring 5+(2 x^(3/2)-3/x^(3/2))^2 together using the common denominator x^3:
(4 x^6-7 x^3+9)/x^3 = 5

Multiply both sides by x^3:
4 x^6-7 x^3+9 = 5 x^3

Subtract 5 x^3 from both sides:
4 x^6-12 x^3+9 = 0

Factor 4 x^6-12 x^3+9 into a perfect square:
(2 x^3-3)^2 = 0

Take the square root of both sides:
2 x^3-3 = 0

Add 3 to both sides:
2 x^3 = 3

Divide both sides by 2:
x^3 = 3/2

Taking cube roots gives (3/2)^(1/3) times the third roots of unity:
Answer: |  x = -(-3/2)^(1/3)       or        x = (3/2)^(1/3)=1.145        or       x = (-1)^(2/3) (3/2)^(1/3)

 Apr 16, 2016

0 Online Users