+0  
 
+10
3938
3
avatar

Find the remainder when $1! + 2! + 3! + \dots + 100!$ is divided by 30.

 May 7, 2016
 #1
avatar
0

Find the remainder when $1! + 2! + 3! + \dots + 100!$ is divided by 30.

 

Sum (n!)(n=1 to 100) mod 30 = 33 Remainder

 May 7, 2016
 #2
avatar
+1

SORRY, THERE IS A TYPO IN THE ABOVE. THE REMAINDER IS 3 NOT 33.

 May 7, 2016
 #3
avatar+118723 
+3

Find the remainder when $1! + 2! + 3! + \dots + 100!$ is divided by 30.

 

 

I am still new to modular arithemtic but this is what I am thinking that this is the same as

the remainder when 1! is divided by 30 + the reminder when 2! is divided by 30 +...... the reminder when 100! is divided by 30.

And then after all these reminders are added together divide them by 30 and find the remainder of the original question.

 

 

1!=1  and    1mod30=1

2!=2   and    2mod30=2

3!=6   and    6mod30=6

4!=6*4 and     24mod30=24

5!=24*5=120          120/30= 4      so 5!=0 mod 30

6!=120*6                 120*6/30=4*6=24      so  6!=0 mod 30

all the others up to 100! will equal 0 mod 30 

so

(1! + 2! + 3! + \dots + 100!) mod30 = (1+2+6+24) mod30   =  33mod30  = 3

 May 7, 2016

2 Online Users