We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive pseudonymised information about your use of our website. cookie policy and privacy policy.
 
+0  
 
0
92
2
avatar+327 

Which quadratic function best fits this data?

 

Options:

 

y=−11.41x^2+154.42x−143.9

y=11.41x^2+154.42x+143.9

y=−11.41x^2+154.42x+143.9

y=11.41x2^+154.42x−143.9

 

Thanks again. Happy valentines day! :)

 Feb 14, 2019
 #1
avatar+100516 
+1

Of course, we are gonna' need an app for this

 

I like this one :  https://keisan.casio.com/exec/system/14059932254941

 

The correct function is :  y=−11.41x^2+154.42x−143.9

 

 

cool cool cool

 Feb 14, 2019
 #2
avatar+5074 
+1

For completeness I'll show you how this is solved in general.  It's not trivial

 

\(\text{first we construct the matrix}\\ X = \begin{pmatrix}1 &x_1 &x_1^2\\1 &x_2 &x_2^2\\\vdots\\1 &x_n &x_n^2\end{pmatrix}\)

 

\(\text{In this problem this is}\\ X=\left( \begin{array}{ccc} 1 & 1 & 1 \\ 1 & 2 & 4 \\ 1 & 3 & 9 \\ 1 & 4 & 16 \\ 1 & 5 & 25 \\ 1 & 6 & 36 \\ \end{array} \right)\)

 

\(\text{We then form the matrix}\\ Y=\begin{pmatrix}y_1\\y_2\\\vdots \\ y_n\end{pmatrix}\\ \text{In this problem this is}\\ (32, 78, 178, 326, 390, 337)^T\)

 

\(\text{The equation for the coefficients of the least squares quadratic fit is given by}\\ c = (X^TX)^{-1}X^TY\)


\(\text{Grinding this through we get}\\ c =(-143.9,154.418,-11.4107)^T \text{ i.e. that the best fit quadratic is}\\ y(t) = -11.41t^2 + 154.42x - 143.9\)

.
 Feb 14, 2019
edited by Rom  Feb 14, 2019

16 Online Users