We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive pseudonymised information about your use of our website. cookie policy and privacy policy.
 
+0  
 
0
276
2
avatar+644 

 

Find an ordered triple (x,y,z)  of real numbers satisfying x <= y <= z and the system of equations
sqrtx + sqrty + sqrtz = 10

x + y + z = 38

sqrtxy + sqrtxz + sqrtyz = 30

 Jan 25, 2018
 #1
avatar
+1

Your last equation should be: sqrtxy + sqrtxz + sqrtyz = 31 NOT 30 !!

 

By simple iteration x=4, y=9, z=25

 Jan 25, 2018
edited by Guest  Jan 25, 2018
 #2
avatar+101090 
+1

If this is

 

sqrt(x) + sqrt(y) + sqrt(z) = 10

x + y + z = 38

sqrt (xy ) + sqrt (xz ) + sqrt (yz) = 30

 

No solutions exist

 

I  let        a = sqrt (x), b  = sqrt(y)  and c = sqrt (z)

 

And...as the guest points  out ....   there is a solution  if the last equation = 31

 

a = 2   b  = 3  and  c = 5

 

So     x  = 4, y = 9  and z  = 25

 

I can give you the details of my method...if you want them

 

 

 

cool cool cool

 Jan 25, 2018
edited by CPhill  Jan 25, 2018

13 Online Users

avatar
avatar