+0  
 
0
707
5
avatar

[p or(~p and q)] = ?

 Oct 22, 2015

Best Answer 

 #3
avatar+26404 
+30

[p or(~p and q)] = ?

 

\([p \text{ or } (~p \text{ and }q)] = p + \bar{p}\cdot q\)

 

\(\text{true }=1 \quad \text{false }=0 \qquad \text{ and } = "\cdot" \quad \text{ or } = "+"\\ \begin{array}{|r|r|r|r||r|} \hline p & q & \bar{p} & \bar{p} \cdot q & p+ \bar{p} \cdot q & p \text{ and } q \\ \hline 0 & 0 & 1 & 0 & 0 & 0\\ 0 & 1 & 1 & 1 & 1 & 1 \\ 1 & 0 & 0 & 0 & 1 & 1\\ 1 & 1 & 0 & 0 & 1 & 1\\ \hline \end{array}\)

 

laugh

 Oct 22, 2015
 #1
avatar+130560 
+5

[p or(~p and q)] =

 

p v (~p ^ q )]  =

 

(p v ~p)  ^  (p v q)  =   [this is the universal set intersected with (p v q)  ]  =

 

p v q

 

 

cool cool cool

 

Can some other mathematician check this???

 Oct 22, 2015
 #2
avatar
+5

Let's see....

Truth table

Minimal Forms

Logic Circuit

 Oct 22, 2015
 #3
avatar+26404 
+30
Best Answer

[p or(~p and q)] = ?

 

\([p \text{ or } (~p \text{ and }q)] = p + \bar{p}\cdot q\)

 

\(\text{true }=1 \quad \text{false }=0 \qquad \text{ and } = "\cdot" \quad \text{ or } = "+"\\ \begin{array}{|r|r|r|r||r|} \hline p & q & \bar{p} & \bar{p} \cdot q & p+ \bar{p} \cdot q & p \text{ and } q \\ \hline 0 & 0 & 1 & 0 & 0 & 0\\ 0 & 1 & 1 & 1 & 1 & 1 \\ 1 & 0 & 0 & 0 & 1 & 1\\ 1 & 1 & 0 & 0 & 1 & 1\\ \hline \end{array}\)

 

laugh

heureka Oct 22, 2015
 #4
avatar+26404 
+30

New Edited:

[p or(~p and q)] = ?

 


\([p \text{ or }( \text{~} p \text{ and } q)] = p + \bar{p}\cdot q = p+q= p \text{ or } q \)

 

\(\text{true }=1 \quad \text{false }=0 \qquad \text{ and } = "\cdot" \quad \text{ or } = "+"\\ \begin{array}{|r|r|r|r||r|} \hline p & q & \bar{p} & \bar{p} \cdot q & p+ \bar{p} \cdot q & p+q = p \text{ or } q \\ \hline 0 & 0 & 1 & 0 & 0 & 0\\ 0 & 1 & 1 & 1 & 1 & 1 \\ 1 & 0 & 0 & 0 & 1 & 1\\ 1 & 1 & 0 & 0 & 1 & 1\\ \hline \end{array}\)

 


laugh

 Oct 22, 2015
 #5
avatar+33666 
0

Here's a way of visualizing it:

 

diagrams

 

.

 Oct 23, 2015

1 Online Users