[p or(~p and q)] = ?
\([p \text{ or } (~p \text{ and }q)] = p + \bar{p}\cdot q\)
\(\text{true }=1 \quad \text{false }=0 \qquad \text{ and } = "\cdot" \quad \text{ or } = "+"\\ \begin{array}{|r|r|r|r||r|} \hline p & q & \bar{p} & \bar{p} \cdot q & p+ \bar{p} \cdot q & p \text{ and } q \\ \hline 0 & 0 & 1 & 0 & 0 & 0\\ 0 & 1 & 1 & 1 & 1 & 1 \\ 1 & 0 & 0 & 0 & 1 & 1\\ 1 & 1 & 0 & 0 & 1 & 1\\ \hline \end{array}\)
![]()
[p or(~p and q)] =
p v (~p ^ q )] =
(p v ~p) ^ (p v q) = [this is the universal set intersected with (p v q) ] =
p v q
![]()
Can some other mathematician check this???
[p or(~p and q)] = ?
\([p \text{ or } (~p \text{ and }q)] = p + \bar{p}\cdot q\)
\(\text{true }=1 \quad \text{false }=0 \qquad \text{ and } = "\cdot" \quad \text{ or } = "+"\\ \begin{array}{|r|r|r|r||r|} \hline p & q & \bar{p} & \bar{p} \cdot q & p+ \bar{p} \cdot q & p \text{ and } q \\ \hline 0 & 0 & 1 & 0 & 0 & 0\\ 0 & 1 & 1 & 1 & 1 & 1 \\ 1 & 0 & 0 & 0 & 1 & 1\\ 1 & 1 & 0 & 0 & 1 & 1\\ \hline \end{array}\)
![]()
New Edited:
[p or(~p and q)] = ?
\([p \text{ or }( \text{~} p \text{ and } q)] = p + \bar{p}\cdot q = p+q= p \text{ or } q \)
\(\text{true }=1 \quad \text{false }=0 \qquad \text{ and } = "\cdot" \quad \text{ or } = "+"\\ \begin{array}{|r|r|r|r||r|} \hline p & q & \bar{p} & \bar{p} \cdot q & p+ \bar{p} \cdot q & p+q = p \text{ or } q \\ \hline 0 & 0 & 1 & 0 & 0 & 0\\ 0 & 1 & 1 & 1 & 1 & 1 \\ 1 & 0 & 0 & 0 & 1 & 1\\ 1 & 1 & 0 & 0 & 1 & 1\\ \hline \end{array}\)
![]()