We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive pseudonymised information about your use of our website. cookie policy and privacy policy.
 
+0  
 
+5
737
3
avatar

Will can paint a house in 3 hours. Sam can paint a house in 5 hours. How long will it take for them to paint it together?

 Nov 25, 2015

Best Answer 

 #2
avatar+23301 
+23

Will can paint a house in 3 hours. Sam can paint a house in 5 hours. How long will it take for them to paint it together?

 

\(\begin{array}{lll} \text{Will painting } & \text{per hour} & \frac13 \text{ house }\\ \text{Sam painting } & \text{per hour} & \frac15 \text{ house }\\\\ \end{array}\\ \boxed{~ \begin{array}{lll} \frac13 \frac{\text{house}}{\text{hour}} \cdot t + \frac15 \frac{\text{house}}{\text{hour}} \cdot t & =& 1\ \text{ house } \end{array} ~}\\ \begin{array}{rcl} \\ t \cdot \left( \frac13 \frac{\text{house}}{\text{hour}} + \frac15 \frac{\text{house}}{\text{hour}} \right) & =& 1\ \text{ house }\\ t \cdot \left( \frac13 + \frac15 \right) \frac{\text{house}}{\text{hour}} & =& 1\ \text{ house }\\ t \cdot \left( \frac13\cdot \frac55 + \frac15\cdot \frac33 \right) \frac{\text{house}}{\text{hour}} & =& 1\ \text{ house }\\ t \cdot \left( \frac{5}{15} + \frac{5}{15} \right) \frac{\text{house}}{\text{hour}} & =& 1\ \text{ house }\\ t \cdot \left( \frac{8}{15} \right) \frac{\text{house}}{\text{hour}} & =& 1\ \text{ house }\\ t & =& \frac{15}{8}\ \text{ house }\frac{\text{hour}}{\text{house}}\\ t & =& \frac{15}{8}\ \text{ hour }\\ t & =& 1\ \text{ hour } 52.5\ \text{ minutes }\\ \end{array}\)

 

laugh

 Nov 25, 2015
 #1
avatar+104793 
+15

Here's an easy way to solve this kind of problem:

 

Add the fractions together

 

1/3  + 1/5  =  

 

5/15 + 3/15  =

 

8/15

 

Take the reciprocal of this  =

 

15 / 8  = 

 

1 7/8   hours

 

 

cool cool cool

 Nov 25, 2015
 #2
avatar+23301 
+23
Best Answer

Will can paint a house in 3 hours. Sam can paint a house in 5 hours. How long will it take for them to paint it together?

 

\(\begin{array}{lll} \text{Will painting } & \text{per hour} & \frac13 \text{ house }\\ \text{Sam painting } & \text{per hour} & \frac15 \text{ house }\\\\ \end{array}\\ \boxed{~ \begin{array}{lll} \frac13 \frac{\text{house}}{\text{hour}} \cdot t + \frac15 \frac{\text{house}}{\text{hour}} \cdot t & =& 1\ \text{ house } \end{array} ~}\\ \begin{array}{rcl} \\ t \cdot \left( \frac13 \frac{\text{house}}{\text{hour}} + \frac15 \frac{\text{house}}{\text{hour}} \right) & =& 1\ \text{ house }\\ t \cdot \left( \frac13 + \frac15 \right) \frac{\text{house}}{\text{hour}} & =& 1\ \text{ house }\\ t \cdot \left( \frac13\cdot \frac55 + \frac15\cdot \frac33 \right) \frac{\text{house}}{\text{hour}} & =& 1\ \text{ house }\\ t \cdot \left( \frac{5}{15} + \frac{5}{15} \right) \frac{\text{house}}{\text{hour}} & =& 1\ \text{ house }\\ t \cdot \left( \frac{8}{15} \right) \frac{\text{house}}{\text{hour}} & =& 1\ \text{ house }\\ t & =& \frac{15}{8}\ \text{ house }\frac{\text{hour}}{\text{house}}\\ t & =& \frac{15}{8}\ \text{ hour }\\ t & =& 1\ \text{ hour } 52.5\ \text{ minutes }\\ \end{array}\)

 

laugh

heureka Nov 25, 2015

5 Online Users