+0

# Painting Houses

+5
370
3

Will can paint a house in 3 hours. Sam can paint a house in 5 hours. How long will it take for them to paint it together?

Guest Nov 25, 2015

#2
+18956
+23

Will can paint a house in 3 hours. Sam can paint a house in 5 hours. How long will it take for them to paint it together?

$$\begin{array}{lll} \text{Will painting } & \text{per hour} & \frac13 \text{ house }\\ \text{Sam painting } & \text{per hour} & \frac15 \text{ house }\\\\ \end{array}\\ \boxed{~ \begin{array}{lll} \frac13 \frac{\text{house}}{\text{hour}} \cdot t + \frac15 \frac{\text{house}}{\text{hour}} \cdot t & =& 1\ \text{ house } \end{array} ~}\\ \begin{array}{rcl} \\ t \cdot \left( \frac13 \frac{\text{house}}{\text{hour}} + \frac15 \frac{\text{house}}{\text{hour}} \right) & =& 1\ \text{ house }\\ t \cdot \left( \frac13 + \frac15 \right) \frac{\text{house}}{\text{hour}} & =& 1\ \text{ house }\\ t \cdot \left( \frac13\cdot \frac55 + \frac15\cdot \frac33 \right) \frac{\text{house}}{\text{hour}} & =& 1\ \text{ house }\\ t \cdot \left( \frac{5}{15} + \frac{5}{15} \right) \frac{\text{house}}{\text{hour}} & =& 1\ \text{ house }\\ t \cdot \left( \frac{8}{15} \right) \frac{\text{house}}{\text{hour}} & =& 1\ \text{ house }\\ t & =& \frac{15}{8}\ \text{ house }\frac{\text{hour}}{\text{house}}\\ t & =& \frac{15}{8}\ \text{ hour }\\ t & =& 1\ \text{ hour } 52.5\ \text{ minutes }\\ \end{array}$$

heureka  Nov 25, 2015
Sort:

#1
+82944
+15

Here's an easy way to solve this kind of problem:

1/3  + 1/5  =

5/15 + 3/15  =

8/15

Take the reciprocal of this  =

15 / 8  =

1 7/8   hours

CPhill  Nov 25, 2015
#2
+18956
+23

Will can paint a house in 3 hours. Sam can paint a house in 5 hours. How long will it take for them to paint it together?

$$\begin{array}{lll} \text{Will painting } & \text{per hour} & \frac13 \text{ house }\\ \text{Sam painting } & \text{per hour} & \frac15 \text{ house }\\\\ \end{array}\\ \boxed{~ \begin{array}{lll} \frac13 \frac{\text{house}}{\text{hour}} \cdot t + \frac15 \frac{\text{house}}{\text{hour}} \cdot t & =& 1\ \text{ house } \end{array} ~}\\ \begin{array}{rcl} \\ t \cdot \left( \frac13 \frac{\text{house}}{\text{hour}} + \frac15 \frac{\text{house}}{\text{hour}} \right) & =& 1\ \text{ house }\\ t \cdot \left( \frac13 + \frac15 \right) \frac{\text{house}}{\text{hour}} & =& 1\ \text{ house }\\ t \cdot \left( \frac13\cdot \frac55 + \frac15\cdot \frac33 \right) \frac{\text{house}}{\text{hour}} & =& 1\ \text{ house }\\ t \cdot \left( \frac{5}{15} + \frac{5}{15} \right) \frac{\text{house}}{\text{hour}} & =& 1\ \text{ house }\\ t \cdot \left( \frac{8}{15} \right) \frac{\text{house}}{\text{hour}} & =& 1\ \text{ house }\\ t & =& \frac{15}{8}\ \text{ house }\frac{\text{hour}}{\text{house}}\\ t & =& \frac{15}{8}\ \text{ hour }\\ t & =& 1\ \text{ hour } 52.5\ \text{ minutes }\\ \end{array}$$

heureka  Nov 25, 2015

### 15 Online Users

We use cookies to personalise content and ads, to provide social media features and to analyse our traffic. We also share information about your use of our site with our social media, advertising and analytics partners.  See details