+0  
 
+5
486
3
avatar

Will can paint a house in 3 hours. Sam can paint a house in 5 hours. How long will it take for them to paint it together?

Guest Nov 25, 2015

Best Answer 

 #2
avatar+19839 
+23

Will can paint a house in 3 hours. Sam can paint a house in 5 hours. How long will it take for them to paint it together?

 

\(\begin{array}{lll} \text{Will painting } & \text{per hour} & \frac13 \text{ house }\\ \text{Sam painting } & \text{per hour} & \frac15 \text{ house }\\\\ \end{array}\\ \boxed{~ \begin{array}{lll} \frac13 \frac{\text{house}}{\text{hour}} \cdot t + \frac15 \frac{\text{house}}{\text{hour}} \cdot t & =& 1\ \text{ house } \end{array} ~}\\ \begin{array}{rcl} \\ t \cdot \left( \frac13 \frac{\text{house}}{\text{hour}} + \frac15 \frac{\text{house}}{\text{hour}} \right) & =& 1\ \text{ house }\\ t \cdot \left( \frac13 + \frac15 \right) \frac{\text{house}}{\text{hour}} & =& 1\ \text{ house }\\ t \cdot \left( \frac13\cdot \frac55 + \frac15\cdot \frac33 \right) \frac{\text{house}}{\text{hour}} & =& 1\ \text{ house }\\ t \cdot \left( \frac{5}{15} + \frac{5}{15} \right) \frac{\text{house}}{\text{hour}} & =& 1\ \text{ house }\\ t \cdot \left( \frac{8}{15} \right) \frac{\text{house}}{\text{hour}} & =& 1\ \text{ house }\\ t & =& \frac{15}{8}\ \text{ house }\frac{\text{hour}}{\text{house}}\\ t & =& \frac{15}{8}\ \text{ hour }\\ t & =& 1\ \text{ hour } 52.5\ \text{ minutes }\\ \end{array}\)

 

laugh

heureka  Nov 25, 2015
 #1
avatar+87641 
+15

Here's an easy way to solve this kind of problem:

 

Add the fractions together

 

1/3  + 1/5  =  

 

5/15 + 3/15  =

 

8/15

 

Take the reciprocal of this  =

 

15 / 8  = 

 

1 7/8   hours

 

 

cool cool cool

CPhill  Nov 25, 2015
 #2
avatar+19839 
+23
Best Answer

Will can paint a house in 3 hours. Sam can paint a house in 5 hours. How long will it take for them to paint it together?

 

\(\begin{array}{lll} \text{Will painting } & \text{per hour} & \frac13 \text{ house }\\ \text{Sam painting } & \text{per hour} & \frac15 \text{ house }\\\\ \end{array}\\ \boxed{~ \begin{array}{lll} \frac13 \frac{\text{house}}{\text{hour}} \cdot t + \frac15 \frac{\text{house}}{\text{hour}} \cdot t & =& 1\ \text{ house } \end{array} ~}\\ \begin{array}{rcl} \\ t \cdot \left( \frac13 \frac{\text{house}}{\text{hour}} + \frac15 \frac{\text{house}}{\text{hour}} \right) & =& 1\ \text{ house }\\ t \cdot \left( \frac13 + \frac15 \right) \frac{\text{house}}{\text{hour}} & =& 1\ \text{ house }\\ t \cdot \left( \frac13\cdot \frac55 + \frac15\cdot \frac33 \right) \frac{\text{house}}{\text{hour}} & =& 1\ \text{ house }\\ t \cdot \left( \frac{5}{15} + \frac{5}{15} \right) \frac{\text{house}}{\text{hour}} & =& 1\ \text{ house }\\ t \cdot \left( \frac{8}{15} \right) \frac{\text{house}}{\text{hour}} & =& 1\ \text{ house }\\ t & =& \frac{15}{8}\ \text{ house }\frac{\text{hour}}{\text{house}}\\ t & =& \frac{15}{8}\ \text{ hour }\\ t & =& 1\ \text{ hour } 52.5\ \text{ minutes }\\ \end{array}\)

 

laugh

heureka  Nov 25, 2015

7 Online Users

avatar

New Privacy Policy

We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive information about your use of our website.
For more information: our cookie policy and privacy policy.