+0  
 
0
40
2
avatar

The parabolas defined by the equations y = -x^2 - x + 3 and y = 2x^2 - 1 intersect at points (a, b) and (c, d), where c is greater than or equal to a. What is c - a? Express your answer as a common fraction.

 Dec 30, 2021
 #1
avatar
0

You are only looking for the 'x' coordinates of the poits of intersection ....so

 

-x^2-x+3  =  2x^2-1

3x^2+x - 4 = 0          x = 1   and - 4/3 <===== you can finish

 Dec 30, 2021
 #2
avatar+13015 
+1

What is c - a?

 

Hello Guest!

 

\( -x^2 - x + 3 = 2x^2 - 1\\ \color{blue}3x^2+x-4=0\)

\({\color{blue}a=}\frac{-1+7}{6}=\color{blue}1\\ b=1\\ {\color{blue}c=}2\cdot \frac{16}{9}-1=\color{blue}\frac{23}{9}\\ d=\frac{-1-7}{6}=-\frac{4}{3}\\\)

\(c-a=\frac{14}{9}\)

laugh  !

 Dec 30, 2021

13 Online Users