Loading [MathJax]/jax/output/SVG/jax.js
 
+0  
 
0
290
2
avatar

Two parabolas are the graphs of the equations y=2x^2-7x+1 and y=8x^2+6x+1. Give all points where they intersect. List the points in order of increasing x-coordinate, separated by semicolons.

 Jun 28, 2022
 #1
avatar+130477 
+1

Set the equations equal

 

8x^2 + 6x + 1 =  2x^2 - 7x + 1          rearrange as

 

6x^2 + 13x   =  0       factor

 

x (6x  - 13)  = 0

 

The  x coordinates   are

 

x = 0                        and        6x - 13 = 0

                                                6x = 13

                                                   x  =13/6

 

 

When x = 0  y  =1

 

When x = 13/6, y=  2(13/6)^2 - 7(13/6) + 1   =  -43/9

 

The points of intersection are 

 

(0 , 1) , (13/6 , -43/9 )

 

 

cool cool cool

 Jun 28, 2022
 #2
avatar+2668 
0

Set equal: 2x27x+1=8x2+6x+1

 

Simplify: 6x2+13x=0

 

Factor: x(6x+13)=0

 

If 6x+13=0x=136, else x=0

 

Substituting this into the quadratic, we find the points of intersection are (136,439) and (0,1)

 Jun 28, 2022

2 Online Users

avatar
avatar