Loading [MathJax]/jax/output/SVG/jax.js
 
+0  
 
0
1099
2
avatar

The parabolas defined by the equations y = -x^2 - x + 3 and y = 2x^2 - 1 intersect at points (a, b) and (c, d), where c is greater than or equal to a. What is c - a? Express your answer as a common fraction.

 Oct 16, 2020
 #1
avatar+37166 
+2

- x^2 -x + 3    = 2x^2 -1      re-arrange

0 = 3x^2 +x-4             use quadratic formula to find the x values where the graphs intersect

                                           a = 3     b   = 1      c = -4

x=b±b24ac2a

                                          use the x values in the equations to calculate the corresponding 'y' values

(actually....you will only need the 'x' values  which will be   c    and a  )

                                                ...then you can answer the rest of the question

 Oct 16, 2020
edited by ElectricPavlov  Oct 16, 2020
 #2
avatar+15069 
+2

The parabolas defined by the equations y = -x^2 - x + 3 and y = 2x^2 - 1 intersect at points (a, b) and (c, d), where c is greater than or equal to a. What is c - a? Express your answer as a common fraction.

 

Hello Guest!

 

y=x2x+3y=2x212x21=x2x+3

3x2+x4=0

x=1±1+43423x=1±76

a=43b=239=2.5¯5c=1d=1

ca=1(43)

ca=73

laugh  !

 Oct 16, 2020

2 Online Users