+0  
 
0
728
2
avatar
partial derivative w.r.t x (52-3x^2-4y^2)^0.5
 Feb 23, 2015

Best Answer 

 #2
avatar+130516 
+5

Let's call this function z

So

z = (52 - 3x^2 - 4y^2)^(1/2)  .... so.....

zx = (1/2)(52 - 3x^2 - 4y^2)^(-1/2) * ∂/∂x (52 - 3x^2 - 4y^2) =

(1/2) (52 - 3x^2 - 4y^2)^(-1/2) * (-6x) =

(-3x)(52 - 3x^2 - 4y^2)^(-1/2)

Remember....we're differetiating with respect to x, so any "y" terms are treated as constants when taking their derivatives.....

 

 Feb 24, 2015
 #1
avatar+23254 
0

(52 - 3x2 -4y2)1/2

First derivative --->   (1/2)(52 - 3x2 - 4y2)-1/2(-6x - 8yy')

 Feb 24, 2015
 #2
avatar+130516 
+5
Best Answer

Let's call this function z

So

z = (52 - 3x^2 - 4y^2)^(1/2)  .... so.....

zx = (1/2)(52 - 3x^2 - 4y^2)^(-1/2) * ∂/∂x (52 - 3x^2 - 4y^2) =

(1/2) (52 - 3x^2 - 4y^2)^(-1/2) * (-6x) =

(-3x)(52 - 3x^2 - 4y^2)^(-1/2)

Remember....we're differetiating with respect to x, so any "y" terms are treated as constants when taking their derivatives.....

 

CPhill Feb 24, 2015

1 Online Users