+0

# Permutations and Combinations

+5
104
3

On a hockey team of 45 players, only 9 play at any given time. How many different groups of people could be on the ice? {nl}

formula is:      nCr = 𝑛!/(𝑛−𝑟)!𝑟!

Guest Mar 3, 2017
edited by Guest  Mar 3, 2017
Sort:

#2
+81140
0

C(45,9) = 886,163,135  different teams are possible

CPhill  Mar 3, 2017
#3
+18843
+5

On a hockey team of 45 players, only 9 play at any given time.

How many different groups of people could be on the ice?

formula is:      nCr = 𝑛!/(𝑛−𝑟)!𝑟!

$$\begin{array}{|rcll|} \hline && nCr = \frac{n!}{(n-r)!r!} \qquad n= 45,\ r= 9 \\ \hline && \frac{45!}{(45-9)!9!} \\\\ &=& \frac{45!}{36!9!} \\\\ &=& \frac{36!\cdot 37\cdot 38\cdot 39\cdot 40\cdot 41\cdot 42\cdot 43\cdot 44\cdot 45}{36!9!} \\\\ &=& \frac{37\cdot 38\cdot 39\cdot 40\cdot 41\cdot 42\cdot 43\cdot 44\cdot 45}{9!} \\\\ &=& \frac{37\cdot 38\cdot 39\cdot 40\cdot 41\cdot 42\cdot 43\cdot 44\cdot 45}{9\cdot 8\cdot 7\cdot 6\cdot 5\cdot 4\cdot 3\cdot 2\cdot 1} \\\\ &=& 37\cdot \frac{38}{2}\cdot \frac{39}{3}\cdot \frac{40}{8}\cdot 41\cdot \frac{42}{6\cdot 7}\cdot 43\cdot \frac{44}{4}\cdot \frac{45}{5\cdot 9} \\\\ &=& 37\cdot 19\cdot 13\cdot 5\cdot 41\cdot \frac{42}{42}\cdot 43\cdot 11\cdot \frac{45}{45} \\\\ &=& 37\cdot 19\cdot 13\cdot 5\cdot 41\cdot 43\cdot 11 \\\\ &=& \mathbf{886163135} \\ \hline \end{array}$$

heureka  Mar 3, 2017

### 27 Online Users

We use cookies to personalise content and ads, to provide social media features and to analyse our traffic. We also share information about your use of our site with our social media, advertising and analytics partners.  See details