#2**0 **

(a)**\(Snell's \)** **\(Law\)**: **\(n\) _{\(1\)}\(sin(\theta\)**

n_{1}=1

n_{2}=1.33

(b) \(\theta\)_{1} =\(\theta\)_{3}=40º

\(\theta\)_{2}=?

_{}

sin(40)=1.33sin(\(\theta\)_{2})

\(\theta\)_{2}=arcsin[100sin(40)/133]

\(\theta\)_{2}=28.90º

(c) f=speed of light in substance

c=speed of light in vacuum=3*\(10^8\)m/s

n=index of refraction

**\(f={c\over n}\)**

f=3.99*\(10^8\)m/s

(d) h=frequency

w=wavelength

f=speed of light in substance

f=hw

3.99*\(10^8\)m/s=7.85*10^{1}^{6}/s*w

w=(3.99/7.85)*(10^{8-16})=5.08*10^{-9}m

(e) \(Snell's \) \(Law\): \(n\)_{\(1\)}\(sin(\theta\)_{\(1\)}\()=n\)_{\(2\)}\(sin(\theta\)_{\(2\)}\()\)

n_{1}sin(\(\theta\)_{1})=1

sin(90)=1

1.33sin(\(\theta\)_{2})=1

\(\theta\)_{2}=arcsin(100/133)=48.75º

Guest Aug 10, 2016