0=26sin60t + (1/2)(-9.8)t^2
0=(26sin60)t + (1/2)(-9.8)t^2 It is better with the extra brackets.
0=t [(26sin60)+ (1/2)(-9.8)t ]
t=0 or 26sin60 = (1/2)(9.8)t
\(t=0\qquad or \qquad 26*\frac{\sqrt3}{2} = \frac{(9.8)\;t}{2} \\ t=0\qquad or \qquad 26\sqrt3 = (9.8)\;t\\ t=0\qquad or \qquad \frac{26\sqrt3}{9.8} = \;t\\\)
And you can finish it.
0=26sin60t + (1/2)(-9.8)t^2
0=(26sin60)t + (1/2)(-9.8)t^2 It is better with the extra brackets.
0=t [(26sin60)+ (1/2)(-9.8)t ]
t=0 or 26sin60 = (1/2)(9.8)t
\(t=0\qquad or \qquad 26*\frac{\sqrt3}{2} = \frac{(9.8)\;t}{2} \\ t=0\qquad or \qquad 26\sqrt3 = (9.8)\;t\\ t=0\qquad or \qquad \frac{26\sqrt3}{9.8} = \;t\\\)
And you can finish it.
Solve for t:
22.5167t-4.9t^2 = 0
22.5167 t-4.9 t^2 = (1125833 t)/50000-(49 t^2)/10:
(1125833 t)/50000-(49 t^2)/10 = 0
Factor t and constant terms from the left hand side:
-(t (245000 t-1125833))/50000 = 0
Multiply both sides by -50000:
t (245000 t-1125833) = 0
Split into two equations:
t = 0 or 245000 t-1125833 = 0
Add 1125833 to both sides:
t = 0 or 245000 t = 1125833
Divide both sides by 245000:
Answer: |
| t = 0 or t = 1125833/245000