+0  
 
0
46
2
avatar

A rock is dropped from a bridge, When it's 1m from the water it takes 0.05 seconds to hit the water.

Calculate the height of the bridge.

 

(Air resistance is ignored)

Guest May 28, 2018
 #1
avatar+26716 
+1

First, use s = v1t + (1/2)gt2 to find v1, the velocity at s = 1m (g = 9.81 m/s2, t = 0.05 s).

 

Then use v12= 2gh to find the distance, h, from the top of the bridge to 1 m above the water (assuming rock is dropped with zero initial velocity).

 

Then height of bridge = h + 1 m

Alan  May 28, 2018
 #2
avatar+19475 
+1

A rock is dropped from a bridge, When it's 1m from the water it takes 0.05 seconds to hit the water.

Calculate the height of the bridge.

 

\(\begin{array}{|lrcll|} \hline (1)& h &=& \frac{g}{2}t^2 \\ & t &=& \sqrt{\frac{2h}{g}} \\\\ (2)& h-1 &=& \frac{g}{2}(t-0.05)^2 \quad & | \quad t=\sqrt{\frac{2h}{g}}\\ & h-1 &=& \frac{g}{2} \left(\sqrt{\frac{2h}{g}}-0.05 \right)^2 \\ & h-1 &=& \frac{g}{2} \left(\frac{2h}{g} -2\cdot 0.05 \cdot \sqrt{\frac{2h}{g}} + 0.05^2 \right) \\ & h-1 &=& \frac{g}{2} \cdot \frac{2h}{g} -\frac{g}{2} \cdot 2\cdot 0.05 \cdot \sqrt{\frac{2h}{g}} + \frac{g}{2} \cdot 0.05^2 \\ & h-1 &=& h - 0.05\cdot g \cdot \sqrt{\frac{2h}{g}} + 0.05^2 \cdot \frac{g}{2} \\ & -1 &=& - 0.05\cdot g \cdot \sqrt{\frac{2h}{g}} + 0.05^2 \cdot \frac{g}{2} \\ & 0.05\cdot g \cdot \sqrt{\frac{2h}{g}} &=& 1+ 0.05^2 \cdot \frac{g}{2} \quad | \quad \text{square both sides} \\ & 0.05^2\cdot g^2 \cdot \frac{2h}{g} &=& \left(1+ 0.05^2 \cdot \frac{g}{2} \right)^2 \\ & 0.05^2\cdot g \cdot 2h &=& \left(1+ 0.05^2 \cdot \frac{g}{2} \right)^2 \\\\ & \mathbf{ h } & \mathbf{=} & \mathbf{ \dfrac{ \left(1+ 0.05^2 \cdot \frac{g}{2} \right)^2} {2\cdot 0.05^2\cdot g } } \\ \hline \end{array}\)

 

\(\text{Let $g = \frac{9.81\ m}{s^2}$ }\\ \text{$h$ the height of the bridge}: \)

 

\(\begin{array}{|rcll|} \hline h & = & \dfrac{ \left(1+ 0.05^2 \cdot \frac{g}{2} \right)^2} {2\cdot 0.05^2\cdot g } \\\\ & = & \dfrac{ \left(1+ 0.05^2 \cdot \frac{9.81}{2} \right)^2} {2\cdot 0.05^2\cdot 9.81 } \\\\ & = & \dfrac{ \left(1+ 0.05^2 \cdot \frac{9.81}{2} \right)^2} {2\cdot 0.05^2\cdot 9.81 } \\\\ & = & \dfrac{ 1.0122625^2} {0.04905 } \\\\ & = & \dfrac{ 1.02467536891} {0.04905 } \\\\ & = & 20.8904254619 \\ \hline \end{array}\)

 

The height of the bridge is  \(\approx 20.89\ m\)

 

laugh

heureka  May 28, 2018

11 Online Users

avatar

New Privacy Policy

We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive information about your use of our website.
For more information: our cookie policy and privacy policy.