We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive pseudonymised information about your use of our website. cookie policy and privacy policy.
 
+0  
 
0
244
2
avatar

A rock is dropped from a bridge, When it's 1m from the water it takes 0.05 seconds to hit the water.

Calculate the height of the bridge.

 

(Air resistance is ignored)

 May 28, 2018
 #1
avatar+27664 
+1

First, use s = v1t + (1/2)gt2 to find v1, the velocity at s = 1m (g = 9.81 m/s2, t = 0.05 s).

 

Then use v12= 2gh to find the distance, h, from the top of the bridge to 1 m above the water (assuming rock is dropped with zero initial velocity).

 

Then height of bridge = h + 1 m

 May 28, 2018
 #2
avatar+21978 
+1

A rock is dropped from a bridge, When it's 1m from the water it takes 0.05 seconds to hit the water.

Calculate the height of the bridge.

 

\(\begin{array}{|lrcll|} \hline (1)& h &=& \frac{g}{2}t^2 \\ & t &=& \sqrt{\frac{2h}{g}} \\\\ (2)& h-1 &=& \frac{g}{2}(t-0.05)^2 \quad & | \quad t=\sqrt{\frac{2h}{g}}\\ & h-1 &=& \frac{g}{2} \left(\sqrt{\frac{2h}{g}}-0.05 \right)^2 \\ & h-1 &=& \frac{g}{2} \left(\frac{2h}{g} -2\cdot 0.05 \cdot \sqrt{\frac{2h}{g}} + 0.05^2 \right) \\ & h-1 &=& \frac{g}{2} \cdot \frac{2h}{g} -\frac{g}{2} \cdot 2\cdot 0.05 \cdot \sqrt{\frac{2h}{g}} + \frac{g}{2} \cdot 0.05^2 \\ & h-1 &=& h - 0.05\cdot g \cdot \sqrt{\frac{2h}{g}} + 0.05^2 \cdot \frac{g}{2} \\ & -1 &=& - 0.05\cdot g \cdot \sqrt{\frac{2h}{g}} + 0.05^2 \cdot \frac{g}{2} \\ & 0.05\cdot g \cdot \sqrt{\frac{2h}{g}} &=& 1+ 0.05^2 \cdot \frac{g}{2} \quad | \quad \text{square both sides} \\ & 0.05^2\cdot g^2 \cdot \frac{2h}{g} &=& \left(1+ 0.05^2 \cdot \frac{g}{2} \right)^2 \\ & 0.05^2\cdot g \cdot 2h &=& \left(1+ 0.05^2 \cdot \frac{g}{2} \right)^2 \\\\ & \mathbf{ h } & \mathbf{=} & \mathbf{ \dfrac{ \left(1+ 0.05^2 \cdot \frac{g}{2} \right)^2} {2\cdot 0.05^2\cdot g } } \\ \hline \end{array}\)

 

\(\text{Let $g = \frac{9.81\ m}{s^2}$ }\\ \text{$h$ the height of the bridge}: \)

 

\(\begin{array}{|rcll|} \hline h & = & \dfrac{ \left(1+ 0.05^2 \cdot \frac{g}{2} \right)^2} {2\cdot 0.05^2\cdot g } \\\\ & = & \dfrac{ \left(1+ 0.05^2 \cdot \frac{9.81}{2} \right)^2} {2\cdot 0.05^2\cdot 9.81 } \\\\ & = & \dfrac{ \left(1+ 0.05^2 \cdot \frac{9.81}{2} \right)^2} {2\cdot 0.05^2\cdot 9.81 } \\\\ & = & \dfrac{ 1.0122625^2} {0.04905 } \\\\ & = & \dfrac{ 1.02467536891} {0.04905 } \\\\ & = & 20.8904254619 \\ \hline \end{array}\)

 

The height of the bridge is  \(\approx 20.89\ m\)

 

laugh

 May 28, 2018

13 Online Users

avatar
avatar
avatar