+0  
 
+22
7
6249
1
avatar

The position of a squirrel running in a park is given by r⃗ =[(0.280m/s)t+(0.0360m/s2)t2]i^+ (0.0190m/s3)t3j^.

At 5.01 s , how far is the squirrel from its initial position?

At 5.01 s , what is the magnitude of the squirrel's velocity?

At 5.01 s , what is the direction (in degrees counterclockwise from +x-axis) of the squirrel's velocity?

Express your answer to three significant figures and include the appropriate units.

Guest Sep 8, 2015
edited by Guest  Sep 8, 2015

Best Answer 

 #1
avatar+19994 
+20

The position of a squirrel running in a park is given by r⃗   = [(0.280m/s)t+(0.0360m/s2)t2]i+ [ (0.0190m/s3)t3 ] j

a) At 5.01 s , how far is the squirrel from its initial position?

b) At 5.01 s , what is the magnitude of the squirrel's velocity?

c) At 5.01 s , what is the direction (in degrees counterclockwise from +x-axis) of the squirrel's velocity?

Express your answer to three significant figures and include the appropriate units.

 

\(\begin{array}{rcl} \vec{r} &=& \left[ 0.280\ \frac{m}{s}\cdot t+0.0360\ \frac{m}{s^2}\cdot t^2 \right] \vec{i}+ \left[ 0.0190\ \frac{m}{s^3}\cdot t^3 \right] \vec{j}\\ \\ \vec{r} &=& \dbinom{x(t)}{y(t)}= \begin{pmatrix} 0.280\ \frac{m}{s}\cdot t+0.0360\ \frac{m}{s^2}\cdot t^2 \\ 0.0190\ \frac{m}{s^3}\cdot t^3 \end{pmatrix}\\\\\\ \text{a) } t = 5.01~s\\ x(5.01~s)&=&0.280\ \frac{m}{s}\cdot (5.01~s)+0.0360\ \frac{m}{s^2}\cdot (5.01~s)^2 = 2.30640360000~m\\ y(5.01~s)&=&0.0190\ \frac{m}{s^3}\cdot (5.01~s)^3= 2.38927851900~m\\ r(5.01~s)&=&\sqrt{2.30640360000^2~m^2+2.38927851900^2~m^2} = 3.32086576173~m \end{array}\)

 

The squirrel is 3.32 m from its initial position(0,0)

 

\(\begin{array}{rcl} \vec{v} &=& \dbinom{v_x}{v_y} = \begin{pmatrix} \frac{d\ x(t)}{dt} \\ \frac{d\ y(t)}{dt} \end{pmatrix} = \begin{pmatrix} 0.280\ \frac{m}{s}+2\cdot 0.0360\ \frac{m}{s^2}\cdot t \\3\cdot 0.0190\ \frac{m}{s^3}\cdot t^2 \end{pmatrix}\\\\ \text{b) } t = 5.01~s\\ v_x(5.01~s)&=&0.280\ \frac{m}{s}+2\cdot 0.0360\ \frac{m}{s^2}\cdot (5.01~s) = 0.64072~\frac{m}{s}\\ v_y(5.01~s)&=&3\cdot 0.0190\ \frac{m}{s^3}\cdot (5.01~s)^2= 1.4307057~\frac{m}{s}\\ v(5.01~s)&=&\sqrt{0.64072^2~(\frac{m}{s})^2+1.4307057^2~({\frac{m}{s}})^2} = 1.56762269645~\frac{m}{s}\\ \end{array}\)

 

The magnitude of the squirrel's velocity is 1.57 m/s

 

\(\begin{array}{rcl} \text{c) direction } &=& \arctan{ \left( \frac{v_y}{v_x} \right) } \\ &=& \arctan{ \left( \frac{1.4307057~\frac{m}{s}}{0.64072~\frac{m}{s}} \right) } \\ &=& \arctan{ \left(2.23296556998 \right) } \\ &=& 65.8754973481^{\circ} \end{array}\)

 

The direction (in degrees counterclockwise from +x-axis) of the squirrel's velocity is 65.9 degrees

 

laugh

heureka  Sep 8, 2015
 #1
avatar+19994 
+20
Best Answer

The position of a squirrel running in a park is given by r⃗   = [(0.280m/s)t+(0.0360m/s2)t2]i+ [ (0.0190m/s3)t3 ] j

a) At 5.01 s , how far is the squirrel from its initial position?

b) At 5.01 s , what is the magnitude of the squirrel's velocity?

c) At 5.01 s , what is the direction (in degrees counterclockwise from +x-axis) of the squirrel's velocity?

Express your answer to three significant figures and include the appropriate units.

 

\(\begin{array}{rcl} \vec{r} &=& \left[ 0.280\ \frac{m}{s}\cdot t+0.0360\ \frac{m}{s^2}\cdot t^2 \right] \vec{i}+ \left[ 0.0190\ \frac{m}{s^3}\cdot t^3 \right] \vec{j}\\ \\ \vec{r} &=& \dbinom{x(t)}{y(t)}= \begin{pmatrix} 0.280\ \frac{m}{s}\cdot t+0.0360\ \frac{m}{s^2}\cdot t^2 \\ 0.0190\ \frac{m}{s^3}\cdot t^3 \end{pmatrix}\\\\\\ \text{a) } t = 5.01~s\\ x(5.01~s)&=&0.280\ \frac{m}{s}\cdot (5.01~s)+0.0360\ \frac{m}{s^2}\cdot (5.01~s)^2 = 2.30640360000~m\\ y(5.01~s)&=&0.0190\ \frac{m}{s^3}\cdot (5.01~s)^3= 2.38927851900~m\\ r(5.01~s)&=&\sqrt{2.30640360000^2~m^2+2.38927851900^2~m^2} = 3.32086576173~m \end{array}\)

 

The squirrel is 3.32 m from its initial position(0,0)

 

\(\begin{array}{rcl} \vec{v} &=& \dbinom{v_x}{v_y} = \begin{pmatrix} \frac{d\ x(t)}{dt} \\ \frac{d\ y(t)}{dt} \end{pmatrix} = \begin{pmatrix} 0.280\ \frac{m}{s}+2\cdot 0.0360\ \frac{m}{s^2}\cdot t \\3\cdot 0.0190\ \frac{m}{s^3}\cdot t^2 \end{pmatrix}\\\\ \text{b) } t = 5.01~s\\ v_x(5.01~s)&=&0.280\ \frac{m}{s}+2\cdot 0.0360\ \frac{m}{s^2}\cdot (5.01~s) = 0.64072~\frac{m}{s}\\ v_y(5.01~s)&=&3\cdot 0.0190\ \frac{m}{s^3}\cdot (5.01~s)^2= 1.4307057~\frac{m}{s}\\ v(5.01~s)&=&\sqrt{0.64072^2~(\frac{m}{s})^2+1.4307057^2~({\frac{m}{s}})^2} = 1.56762269645~\frac{m}{s}\\ \end{array}\)

 

The magnitude of the squirrel's velocity is 1.57 m/s

 

\(\begin{array}{rcl} \text{c) direction } &=& \arctan{ \left( \frac{v_y}{v_x} \right) } \\ &=& \arctan{ \left( \frac{1.4307057~\frac{m}{s}}{0.64072~\frac{m}{s}} \right) } \\ &=& \arctan{ \left(2.23296556998 \right) } \\ &=& 65.8754973481^{\circ} \end{array}\)

 

The direction (in degrees counterclockwise from +x-axis) of the squirrel's velocity is 65.9 degrees

 

laugh

heureka  Sep 8, 2015

35 Online Users

New Privacy Policy

We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive information about your use of our website.
For more information: our cookie policy and privacy policy.