+0  
 
-1
119
4
avatar+102 

Match each expression to its equivalent expression with the rational denominators.

 

Tiles

\(^1/_{\sqrt[4]{3x^3y^5}}\)

\(^3/_{\sqrt[4]{27x^{11}y^{13}}}\)

\(^2/_{\sqrt[6]{2x^7y^5}}\)

\(^4/_{\sqrt[6]{32x^5y^9}}\)

 

Pairs

\(^{2\sqrt[6]{2xy^3}}/_{xy^2}\to\)

\(^{\sqrt[4]{27xy^3}}/_{3xy^2}\to\)

\(^{\sqrt[4]{3xy^3}}/_{x^3y^4}\to\)

\(^{\sqrt[6]{32x^5y}}/_{x^2y}\to\)

SpaceModo  Jan 19, 2018
Sort: 

4+0 Answers

 #1
avatar+92194 
+2

Hi SpaceModo,

 

I'll do one of them.

 

\(\frac{{2\sqrt[6]{2xy^3}}}{_{xy^2}}\\ =\frac{{2\sqrt[6]{2xy^3}}}{\sqrt[6]{x^6y^{12}}}\\ =\frac{{2\sqrt[6]{2}}}{\sqrt[6]{x^5y^{9}}}\times\frac{2^{5/6}}{2^{5/6}}\\ =\frac{{2*2}}{\sqrt[6]{x^5y^{9}}}\times\frac{1}{(2^5)^{1/6}}\\ =\frac{{4}}{\sqrt[6]{32x^5y^{9}}}\\ \)

 

 

That is one done, now you can copy the technique and try matching up the others.

If you do not understand this one just ask and see if you can specify what line is giving you trouble :)

Melody  Jan 20, 2018
 #4
avatar+102 
0

\begin{align*}...
{^4/_{\sqrt[6]{32x^5y^9}}}&\stackrel{?}{=}{^{2\sqrt[6]{2xy^3}}/_{xy^2}}\\
{^4/_{\sqrt[6]{32x^5y^9}}}&\stackrel{?}{=}{^{2\sqrt[6]{2xy^3}}/_{\sqrt[6]{32x^5y^9}}}\\
{^4/_{\sqrt[6]{32x^5y^9}}}&\stackrel{?}{=}{^{2\sqrt[6]{2}}/_{\sqrt[6]{x^5y^9}}}\times{^{2^{^{^5}/_6}}/_{2^{^5/_6}}}\\
{^4/_{\sqrt[6]{32x^5y^9}}}&\stackrel{?}{=}{^{2\times2}/_{\sqrt[6]{x^5y^9}}}\times{^1/_{(2^5)^{^1/_6}}}\\
{^4/_{\sqrt[6]{32x^5y^9}}}&\stackrel{\checkmark}{=}{^4/_{\sqrt[6]{32x^5y^9}}}
\end{align*}

\(\begin{align*} {^4/_{\sqrt[6]{32x^5y^9}}}&\stackrel{?}{=}{^{2\sqrt[6]{2xy^3}}/_{xy^2}}\\ {^4/_{\sqrt[6]{32x^5y^9}}}&\stackrel{?}{=}{^{2\sqrt[6]{2xy^3}}/_{\sqrt[6]{32x^5y^9}}}\\ {^4/_{\sqrt[6]{32x^5y^9}}}&\stackrel{?}{=}{^{2\sqrt[6]{2}}/_{\sqrt[6]{x^5y^9}}}\times{^{2^{^5/_6}}/_{2^{^5/_6}}}\\ {^4/_{\sqrt[6]{32x^5y^9}}}&\stackrel{?}{=}{^{2\times2}/_{\sqrt[6]{x^5y^9}}}\times{^1/_{(2^5)^{^1/_6}}}\\ {^4/_{\sqrt[6]{32x^5y^9}}}&\stackrel{\checkmark}{=}{^4/_{\sqrt[6]{32x^5y^9}}} \end{align*}\)

 

][   |) ()   \/ ≡ R y   ( () |\/| P |_ ≡ ><   |\/| /-\ T |-|   ( () |) | |\| G!

However, thank you very much for the help I needed!

SpaceModo  Jan 22, 2018
 #2
avatar+85633 
+1

4√[ 27xy^3] / [ 3xy^2]      writing this in an exponential fashion, we have

 

[ (3^3)^(1/4) * x^(1/4)  * y^(3/4) ]  /  [  3xy^2]  =

 

[( 3^3)(1/4)  * x^(1/4) * y^(3/4)  /  [  (3^(4/4) * x^(4/4) * y^(8/4)  ]

 

[ 3^(3/4)  * x^(1/4)  * y^(3/4) ]  /  [  3^(4/4) * x^(4/4) * y^(8/4)  ]  =

 

{ Using   a^m / a^n  =   a^(m - n)  }

 

1  /  [ 3^(1/4) * x^(3/4) * y^(5/4) ]   write back in radical form

 

1 / 4√ [ 3x3y5 ]

 

 

cool cool cool

CPhill  Jan 20, 2018
 #3
avatar+85633 
+1

4√[ 3xy^3 ]  /  [ x^3y^4 ]  =

 

[  3^(1/4) * x^(1/4)  * y^(3/4) ] / [ x^(12/4) *y^(16/4) ]  =

 

3^(1/4)  / [  x^(11/4) * y^(13/4) ]  =

 

Multiply  top/bottom  by  3^(3/4)  =

 

[ 3^(1/4) * 3^(3/4)] /  [ x^(11/4) * y^(13/4)  * 3^(3/4) ]  =

 

3 / [  x^(11/4) * y^(13/4) * 27^(1/4)  ]

 

Write back in radical form

 

3 / 4√ [  27  x11 y13 ]

 

 

 

cool cool cool

CPhill  Jan 20, 2018

15 Online Users

avatar
avatar
We use cookies to personalise content and ads, to provide social media features and to analyse our traffic. We also share information about your use of our site with our social media, advertising and analytics partners.  See details