Let b > 1. Find the value of
logb(23)+logb(32).
logb(23)+logb(32)=1
Let x=logb(23) and y=logb(23)
Then bx=23 and by=32
Multiplying the two gives us bx×by=bx+y=1
Now, notice that the only way the expression equals 1 is if x+y=0.
Note: In general, logb(x)+logb(y)=logb(xy)