We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive pseudonymised information about your use of our website. cookie policy and privacy policy.
 
+0  
 
0
542
1
avatar

A regular heptagon and a regular 15-gon share a common edge $\overline{AB}$, as shown. Find angle BCD, in degrees.

 Dec 16, 2018
edited by Guest  Dec 16, 2018
edited by Guest  Dec 16, 2018
 #1
avatar+103138 
+2

An interior angle BAC of the the heptagon will measure  [(5/7)180] °

 

Draw  BC

And because BA = AC.....then in triangle ABC,  angle ABC = angle  ACB

 

And angle ACB  =  (180 - mBAC) / 2 =     ( 180 - (5/7)180 ) / 2   =  [ ( 2/7) 180 ] / 2  =  [180/7 ]°

 

Draw  BD......and the interior angle BAD of the 15-gon  =  [ (13/15)180 ]°

 

So angle DAC  =

 

360 - m BAD - m BAC   =   360 - [ 180 (5/7 + 13/15) ] °=  ( 360 - [ 180 (166/ 105)] )° =

 

[ 360 -   1992 / 7 ]°    =   [ 528 / 7 ]°

 

Draw DC

 

And in triangle  DAC....since AC = AD.....then angle ADC  = angle ACD

 

And angle ACD =    [ 180 - m DAC] / 2  =   [ 180 - 528/ 7 ] / 2   =

 

[732/ 14] °   =  [ 366/ 7]°

 

So......angle BCD  =  angle ACB + angle ACD = [ 180/ 7  + 366/ 7]°  =

 

[ 546/ 7]°   =  78°

 

 

cool cool cool

 Dec 16, 2018

9 Online Users

avatar