+0  
 
0
117
1
avatar

The polynomial $f(x)$ has degree 3. If $f(-1) = 15$, $f(0)= 0$, $f(1) = -5$, and $f(2) = 12$, then what are the $x$-intercepts of the graph of $f$?

 Jul 31, 2018
 #1
avatar+21242 
0

The polynomial $f(x)$ has degree 3. If
$f(-1) = 15$,
$f(0)= 0$,
$f(1) = -5$, and
$f(2) = 12$,
then what are the $x$-intercepts of the graph of $f$?

 

\(\begin{array}{|llcll|} \hline \boxed{f(x)=ax^3+bx^2+cx+d }\\\\ f(0) = 0: & 0 = a\cdot0^3+b\cdot 0^2+c\cdot 0 + d \\ & \mathbf{\boxed{d=0}} \\\\ \boxed{f(x)=ax^3+bx^2+cx+0 \\ f(x) = x(ax^2+bx+c) }\\\\ f(-1) = 15: & 15 = (-1)\left(a(-1)^2+b(-1)+c \right) \\ & 15 = (-1) (a-b+c ) \\ &\mathbf{ 15 = -a+b-c \qquad (1) } \\ f(1) = -5: & -5 = 1\cdot\left(a(1)^2+b(1)+c \right) \\ &\mathbf{ -5 = a+b+c \qquad (2) }\\\\ (1)+(2): & 15-5 =b+b \\ & 10 = 2b \\ & \mathbf{\boxed{b=5}} \\\\ \text{see }(1): & 15 = -a+b-c \quad b=5 \\ & 15 = -a+5-c \\ & 10 = -a-c \\ & \mathbf{c = -10-a \qquad (3)} \\\\ \boxed{f(x) = x(ax^2+bx+c) \\ f(x)=x(ax^2+5x-10-a)} \\\\ f(2) = 12: & 12 = 2\cdot(a\cdot2^2+5\cdot 2-10-a ) \\ & 6 = 4a-a \\ & 6 = 3a \\ & \mathbf{\boxed{a=2}} \\\\ \text{see }(3): & c = -10-a \quad a=2 \\ & c = -10-2 \\ & \mathbf{\boxed{c=-12}} \\ \hline \end{array}\)

 

\(\text{The polynomial $f(x)$ of degree $3$ is:} \\ \boxed{f(x) = 2x^3 + 5x^2-12x \\ f(x) = x(2x^2+5x-12) }\)

 

\(\text{x-intercepts $f(x) = 0\ ?$}\\ \begin{array}{|rcll|} \hline \boxed{ f(x) = x(2x^2+5x-12) }\\\\ 0 &=& x(2x^2+5x-12) \\ \mathbf{x_1} &\mathbf{=}&\mathbf{ 0} \\\\ 2x^2+5x-12 &=& 0 \\ x &=& \dfrac{-5\pm \sqrt{25-4\cdot 2\cdot (-12) } }{2\cdot 2} \\ x &=& \dfrac{-5\pm \sqrt{25+96 } }{4} \\ x &=& \dfrac{-5\pm \sqrt{121} }{4} \\ x &=& \dfrac{-5\pm 11 }{4} \\\\ x_2 &=& \dfrac{-5+ 11 }{4} \\ x_2 &=& \dfrac{6}{4} \\ \mathbf{x_2} & \mathbf{=}& \mathbf{ 1.5 } \\\\ x_3 &=& \dfrac{-5- 11 }{4} \\ x_3 &=& -\dfrac{16}{4} \\ \mathbf{x_3} & \mathbf{=}& \mathbf{ -4 } \\ \hline \end{array} \)

 

The x-intrcepts are: \( x=-4,\ x=0,\ x=1.5\)

 

The graph:

 

laugh

 Jul 31, 2018

19 Online Users

New Privacy Policy

We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive information about your use of our website.
For more information: our cookie policy and privacy policy.