We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive pseudonymised information about your use of our website. cookie policy and privacy policy.
 
+0  
 
0
143
1
avatar

The polynomial $f(x)$ has degree 3. If $f(-1) = 15$, $f(0)= 0$, $f(1) = -5$, and $f(2) = 12$, then what are the $x$-intercepts of the graph of $f$?

 Jul 31, 2018
 #1
avatar+21997 
0

The polynomial $f(x)$ has degree 3. If
$f(-1) = 15$,
$f(0)= 0$,
$f(1) = -5$, and
$f(2) = 12$,
then what are the $x$-intercepts of the graph of $f$?

 

\(\begin{array}{|llcll|} \hline \boxed{f(x)=ax^3+bx^2+cx+d }\\\\ f(0) = 0: & 0 = a\cdot0^3+b\cdot 0^2+c\cdot 0 + d \\ & \mathbf{\boxed{d=0}} \\\\ \boxed{f(x)=ax^3+bx^2+cx+0 \\ f(x) = x(ax^2+bx+c) }\\\\ f(-1) = 15: & 15 = (-1)\left(a(-1)^2+b(-1)+c \right) \\ & 15 = (-1) (a-b+c ) \\ &\mathbf{ 15 = -a+b-c \qquad (1) } \\ f(1) = -5: & -5 = 1\cdot\left(a(1)^2+b(1)+c \right) \\ &\mathbf{ -5 = a+b+c \qquad (2) }\\\\ (1)+(2): & 15-5 =b+b \\ & 10 = 2b \\ & \mathbf{\boxed{b=5}} \\\\ \text{see }(1): & 15 = -a+b-c \quad b=5 \\ & 15 = -a+5-c \\ & 10 = -a-c \\ & \mathbf{c = -10-a \qquad (3)} \\\\ \boxed{f(x) = x(ax^2+bx+c) \\ f(x)=x(ax^2+5x-10-a)} \\\\ f(2) = 12: & 12 = 2\cdot(a\cdot2^2+5\cdot 2-10-a ) \\ & 6 = 4a-a \\ & 6 = 3a \\ & \mathbf{\boxed{a=2}} \\\\ \text{see }(3): & c = -10-a \quad a=2 \\ & c = -10-2 \\ & \mathbf{\boxed{c=-12}} \\ \hline \end{array}\)

 

\(\text{The polynomial $f(x)$ of degree $3$ is:} \\ \boxed{f(x) = 2x^3 + 5x^2-12x \\ f(x) = x(2x^2+5x-12) }\)

 

\(\text{x-intercepts $f(x) = 0\ ?$}\\ \begin{array}{|rcll|} \hline \boxed{ f(x) = x(2x^2+5x-12) }\\\\ 0 &=& x(2x^2+5x-12) \\ \mathbf{x_1} &\mathbf{=}&\mathbf{ 0} \\\\ 2x^2+5x-12 &=& 0 \\ x &=& \dfrac{-5\pm \sqrt{25-4\cdot 2\cdot (-12) } }{2\cdot 2} \\ x &=& \dfrac{-5\pm \sqrt{25+96 } }{4} \\ x &=& \dfrac{-5\pm \sqrt{121} }{4} \\ x &=& \dfrac{-5\pm 11 }{4} \\\\ x_2 &=& \dfrac{-5+ 11 }{4} \\ x_2 &=& \dfrac{6}{4} \\ \mathbf{x_2} & \mathbf{=}& \mathbf{ 1.5 } \\\\ x_3 &=& \dfrac{-5- 11 }{4} \\ x_3 &=& -\dfrac{16}{4} \\ \mathbf{x_3} & \mathbf{=}& \mathbf{ -4 } \\ \hline \end{array} \)

 

The x-intrcepts are: \( x=-4,\ x=0,\ x=1.5\)

 

The graph:

 

laugh

 Jul 31, 2018

15 Online Users

avatar
avatar