+0  
 
0
33
1
avatar

A baseball has a circumference of 9 inches.  A softball has a circumference of 12 inches.  What is the approximate difference in volume between the two balls?  Round your answer to the nearest hundredths place.

Guest May 1, 2018
Sort: 

1+0 Answers

 #1
avatar+19344 
0

A baseball has a circumference of 9 inches.  
A softball has a circumference of 12 inches.  
What is the approximate difference in volume between the two balls?  
Round your answer to the nearest hundredths place.

 

\(\text{Let $r_b = $ radius baseball }\\ \text{Let $r_s = $ radius softball }\)

 

1. baseball

\(9 = 2\pi r_b \\ r_b = \dfrac{9}{2\pi} \\ V_b = \dfrac{4}{3}\pi r_b^3 \)

 

2. softball

\(12 = 2\pi r_s \\ r_s = \dfrac{12}{2\pi} \\ V_s = \dfrac{4}{3}\pi r_s^3 \)

 

3. difference in volume

\(\begin{array}{|rcll|} \hline V_s - V_b &=& \dfrac{4}{3}\pi r_s^3 - \dfrac{4}{3}\pi r_b^3 \\\\ &=& \dfrac{4}{3}\pi\left( r_s^3 - r_b^3 \right) \\\\ &=& \dfrac{4}{3}\pi\left[ \left(\dfrac{12}{2\pi} \right)^3 - \left(\dfrac{9}{2\pi} \right)^3 \right] \\\\ &=& \dfrac{4\pi}{3\cdot 8\pi^3} \left( 12^3 - 9^3 \right) \\\\ &=& \dfrac{1}{3\cdot 2\pi^2} \cdot 999 \\\\ &=& \dfrac{166.5}{\pi^2} \\\\ &=& 16.8699770764 \\ \hline \end{array}\)

 

\(\text{The approximate difference in volume between the two balls is $\mathbf{16.87\ in^3}$ }\)

 

laugh

heureka  May 2, 2018

5 Online Users

New Privacy Policy (May 2018)
We use cookies to personalise content and ads, to provide social media features and to analyse our traffic. We also share information about your use of our site with our social media, advertising and analytics partners.  Privacy Policy