+0  
 
0
60
1
avatar+2509 

Please help asap!

NotSoSmart  May 2, 2018

Best Answer 

 #1
avatar
+1

Expand the following:

(q + 0.3)^5

 

(q + 0.3)^5 = sum_(k=0)^5 binomial(5, k) q^(5 - k)×0.3^k = binomial(5, 0) q^5 0.3^0 + binomial(5, 1) q^4 0.3^1 + binomial(5, 2) q^3 0.3^2 + binomial(5, 3) q^2 0.3^3 + binomial(5, 4) q^1 0.3^4 + binomial(5, 5) q^0 0.3^5:

binomial(5, 0) q^5 + 0.3 binomial(5, 1) q^4 + 0.09 binomial(5, 2) q^3 + 0.027 binomial(5, 3) q^2 + 0.0081 binomial(5, 4) q + 0.00243 binomial(5, 5)

 

The binomial coeffients comprise the 6^th row of Pascal's triangle:

q^5 + 5 *0.3 q^4 + 10* 0.3^2 q^3 + 10* 0.3^3 q^2 + 5* 0.3^4 q + 0.3^5

 

q^5 + 1.5q^4 + 0.9q^3 + 0.27q^2 + 0.0405q + 0.00243

Guest May 2, 2018
 #1
avatar
+1
Best Answer

Expand the following:

(q + 0.3)^5

 

(q + 0.3)^5 = sum_(k=0)^5 binomial(5, k) q^(5 - k)×0.3^k = binomial(5, 0) q^5 0.3^0 + binomial(5, 1) q^4 0.3^1 + binomial(5, 2) q^3 0.3^2 + binomial(5, 3) q^2 0.3^3 + binomial(5, 4) q^1 0.3^4 + binomial(5, 5) q^0 0.3^5:

binomial(5, 0) q^5 + 0.3 binomial(5, 1) q^4 + 0.09 binomial(5, 2) q^3 + 0.027 binomial(5, 3) q^2 + 0.0081 binomial(5, 4) q + 0.00243 binomial(5, 5)

 

The binomial coeffients comprise the 6^th row of Pascal's triangle:

q^5 + 5 *0.3 q^4 + 10* 0.3^2 q^3 + 10* 0.3^3 q^2 + 5* 0.3^4 q + 0.3^5

 

q^5 + 1.5q^4 + 0.9q^3 + 0.27q^2 + 0.0405q + 0.00243

Guest May 2, 2018

16 Online Users

New Privacy Policy

We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive information about your use of our website.
For more information: our cookie policy and privacy policy.