+0  
 
0
32
1
avatar+2482 

Please help asap!

NotSoSmart  May 2, 2018

Best Answer 

 #1
avatar
+1

Expand the following:

(q + 0.3)^5

 

(q + 0.3)^5 = sum_(k=0)^5 binomial(5, k) q^(5 - k)×0.3^k = binomial(5, 0) q^5 0.3^0 + binomial(5, 1) q^4 0.3^1 + binomial(5, 2) q^3 0.3^2 + binomial(5, 3) q^2 0.3^3 + binomial(5, 4) q^1 0.3^4 + binomial(5, 5) q^0 0.3^5:

binomial(5, 0) q^5 + 0.3 binomial(5, 1) q^4 + 0.09 binomial(5, 2) q^3 + 0.027 binomial(5, 3) q^2 + 0.0081 binomial(5, 4) q + 0.00243 binomial(5, 5)

 

The binomial coeffients comprise the 6^th row of Pascal's triangle:

q^5 + 5 *0.3 q^4 + 10* 0.3^2 q^3 + 10* 0.3^3 q^2 + 5* 0.3^4 q + 0.3^5

 

q^5 + 1.5q^4 + 0.9q^3 + 0.27q^2 + 0.0405q + 0.00243

Guest May 2, 2018
Sort: 

1+0 Answers

 #1
avatar
+1
Best Answer

Expand the following:

(q + 0.3)^5

 

(q + 0.3)^5 = sum_(k=0)^5 binomial(5, k) q^(5 - k)×0.3^k = binomial(5, 0) q^5 0.3^0 + binomial(5, 1) q^4 0.3^1 + binomial(5, 2) q^3 0.3^2 + binomial(5, 3) q^2 0.3^3 + binomial(5, 4) q^1 0.3^4 + binomial(5, 5) q^0 0.3^5:

binomial(5, 0) q^5 + 0.3 binomial(5, 1) q^4 + 0.09 binomial(5, 2) q^3 + 0.027 binomial(5, 3) q^2 + 0.0081 binomial(5, 4) q + 0.00243 binomial(5, 5)

 

The binomial coeffients comprise the 6^th row of Pascal's triangle:

q^5 + 5 *0.3 q^4 + 10* 0.3^2 q^3 + 10* 0.3^3 q^2 + 5* 0.3^4 q + 0.3^5

 

q^5 + 1.5q^4 + 0.9q^3 + 0.27q^2 + 0.0405q + 0.00243

Guest May 2, 2018

22 Online Users

New Privacy Policy (May 2018)
We use cookies to personalise content and ads, to provide social media features and to analyse our traffic. We also share information about your use of our site with our social media, advertising and analytics partners.  Privacy Policy