We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive pseudonymised information about your use of our website. cookie policy and privacy policy.

+0

# Please help asap

0
244
1

(a) For what positive integers $n$ does $\left(x^2+\frac{1}{x}\right)^n$ have a nonzero constant term?  (b) For the values of $n$ that you found in part (a), what is that constant term? (You can leave your answer in the form of a combination.)

Aug 2, 2018

### 1+0 Answers

#1
+1

(a)

For what positive integers $$n$$ does $$\displaystyle \left(x^2+\frac{1}{x}\right)^n$$ have a nonzero constant term?

$$\begin{array}{|rcll|} \hline && \left(x^2+\dfrac{1}{x}\right)^n \\\\ &=& \left(\dfrac{x^3+1}{x}\right)^n \\\\ &=& \dfrac{1}{x^n} \cdot \left(1+ x^3 \right)^n \\\\ &=& \dfrac{1}{x^n} \cdot \left(\dbinom{n}{0} + \dbinom{n}{1}\left(x^3 \right)^1 + \dbinom{n}{2}\left(x^3 \right)^2 + \dbinom{n}{3}\left(x^3 \right)^3 + \ldots + \dbinom{n}{n}\left(x^3 \right)^n \right) \\\\ &=& \dfrac{1}{x^n} \cdot \sum \limits_{i=0}^{n} \dbinom{n}{i} \left(x^3 \right)^i \\ \hline \end{array}$$

$$\text{We have a nonzero constant, if \\ \dfrac{1}{x^n} \cdot \dbinom{n}{i} \left(x^3 \right)^i = \dbinom{n}{i}, \  } \text{so \left(x^3 \right)^i = x^{3i} = x^n ,\  } \text{so  \mathbf{3i = n} } \text{and  i \in N  }$$

The positive integers $$n$$, which are 3 or multiples of 3 have a nonzero constant term.

$$n=3,6,9,12,\ldots.$$

(b)

For the values of $$n$$ that you found in part (a), what is that constant term? (You can leave your answer in the form of a combination.)

$$\begin{array}{|r|r|l|} \hline i & n=3i & \dbinom{n}{i} \\ \hline 1 & 3 & \dbinom{3}{1} = 3 \\ \hline 2 & 6 & \dbinom{6}{2} = 15 \\ \hline 3 & 9 & \dbinom{9}{3} = 84 \\ \hline 4 & 12 &\dbinom{12}{4} = 495 \\ \hline \ldots & \ldots & \ldots \\ \hline \end{array}$$ Aug 2, 2018