+0  
 
0
108
1
avatar

(a) For what positive integers $n$ does $\left(x^2+\frac{1}{x}\right)^n$ have a nonzero constant term?  (b) For the values of $n$ that you found in part (a), what is that constant term? (You can leave your answer in the form of a combination.)

Guest Aug 2, 2018
 #1
avatar+20595 
+1

(a)

For what positive integers \(n\) does \(\displaystyle \left(x^2+\frac{1}{x}\right)^n\) have a nonzero constant term?

 

\(\begin{array}{|rcll|} \hline && \left(x^2+\dfrac{1}{x}\right)^n \\\\ &=& \left(\dfrac{x^3+1}{x}\right)^n \\\\ &=& \dfrac{1}{x^n} \cdot \left(1+ x^3 \right)^n \\\\ &=& \dfrac{1}{x^n} \cdot \left(\dbinom{n}{0} + \dbinom{n}{1}\left(x^3 \right)^1 + \dbinom{n}{2}\left(x^3 \right)^2 + \dbinom{n}{3}\left(x^3 \right)^3 + \ldots + \dbinom{n}{n}\left(x^3 \right)^n \right) \\\\ &=& \dfrac{1}{x^n} \cdot \sum \limits_{i=0}^{n} \dbinom{n}{i} \left(x^3 \right)^i \\ \hline \end{array}\)

 

\(\text{We have a nonzero constant, if $\\ \dfrac{1}{x^n} \cdot \dbinom{n}{i} \left(x^3 \right)^i = \dbinom{n}{i}$, $\ $ } \text{so $\left(x^3 \right)^i = x^{3i} = x^n $,$\ $ } \text{so $ \mathbf{3i = n}$ } \text{and $ i \in N $ }\)

 

The positive integers \(n\), which are 3 or multiples of 3 have a nonzero constant term.

\(n=3,6,9,12,\ldots.\)

 

 

 (b)

For the values of \(n\) that you found in part (a), what is that constant term? (You can leave your answer in the form of a combination.)

\(\begin{array}{|r|r|l|} \hline i & n=3i & \dbinom{n}{i} \\ \hline 1 & 3 & \dbinom{3}{1} = 3 \\ \hline 2 & 6 & \dbinom{6}{2} = 15 \\ \hline 3 & 9 & \dbinom{9}{3} = 84 \\ \hline 4 & 12 &\dbinom{12}{4} = 495 \\ \hline \ldots & \ldots & \ldots \\ \hline \end{array} \)

 

laugh

heureka  Aug 2, 2018

27 Online Users

avatar
avatar
avatar

New Privacy Policy

We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive information about your use of our website.
For more information: our cookie policy and privacy policy.