+0  
 
+1
171
4
avatar+2442 

Tried solving it but pretty sure i'm doing something wrong help plz

 Sep 3, 2018
 #1
avatar+972 
+1

This is a classic example of system of equations. 

 

If x represented the number of people in a bus,

and y the number of people in a van, we can write the equations: 

 

6y + x = 146 --- (1)

12y + 8x = 592 --- (2)

 

1) Substitution

 

In (1), we can subtract 6y from both sides. 

 

x = 146 - 6y, which we can substitute into (2). 

 

12y + 8(146 - 6y) = 592. Then after solving for y, we can plug into (1) to solve for x. 

 Sep 3, 2018
 #2
avatar+2442 
+1

I understand, somewhat. I knew how to do that part but not what comes after..

8*146 and 8*6

12V+1168-48V=592

(I'm using V and B i hope that's okay!)

Then what do I do next with the 12V and 48V?

RainbowPanda  Sep 3, 2018
edited by RainbowPanda  Sep 3, 2018
 #3
avatar+2442 
0

I got V=16 and B=50 just gonna go with that

 Sep 3, 2018
 #4
avatar+98128 
+1

Let x be the number of people in each van and y  be the number of people in each bus....and we have that

 

6x  + 1y  = 146    rearrange as   1y  = 146  - 6x  ⇒   y  =  146  - 6x    (1)

12x + 8y  = 592     (2)

 

Put  (1)  into (2)  for  "y"  and we have

 

12x  + 8(146  - 6x)  = 592    simplify

12x + 1168  - 48x   = 592

-36x  + 1168  = 592   subtract  1168 from both sides

-36x  = -576    divide both sides by -36

x  = 16  ⇒   number of students in  each van

 

Amd using  (1)...the number of students in each bus is  146  - 6(16)  =  146  - 96  =  50

 

You are correct, RP!!!

 

 

cool cool cool 

 Sep 4, 2018

15 Online Users

avatar