We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive pseudonymised information about your use of our website. cookie policy and privacy policy.
 
+0  
 
0
158
1
avatar+155 

When given the quadratic equation with integer roots: mx^2 - (m-2)x + m - 3 = 0 

What's the value of integer parameter m? And what are the integer roots?

 

edit: thank you so much!!

 Oct 19, 2018
edited by hearts123  Oct 20, 2018
 #1
avatar+100595 
+2

The discriminant  is

(m - 2)^2  - 4m (m - 3)

To have multiple roots....this must be a perfect square > 0

 

(m - 2)^2  - 4m (m - 3)  simplify

m^2 - 4m + 4 - 4m^2 + 12m

-3m^2 + 8m + 4

 

Graphing this.....it is only > 0   when the integer values for m  =    0, 1, 2 or 3

There are two values for m that produce a perfect square

When m  = 1.....the perfect square is 9

When m = 3, the perfect square is 1

 

So....one possible quadratic is

x^2 + x - 2    factoring we have (x + 2) (x - 1)  and the roots are  -2 and 1

 

The other possible quadratic is

3x^2  - x     factor   x (3x - 1)   and the roots are  0 and 1/3

However....we require integer roots...so

 

x^2 + x - 2  is the quadratic     and m = 1

 

 

cool cool cool

 Oct 20, 2018

26 Online Users

avatar
avatar