+0  
 
-1
299
4
avatar

\(Suppose that $g(x)=f^{-1}(x)$. If $g(-15)=0$, $g(0)=3$, $g(3)=9$ and $g(9)=20$, what is $f(f(9))$?\)

 Jun 15, 2019
 #1
avatar+8963 
+3

Suppose that   g(x) = f-1(x) .  If   g(-15) = 0 ,  g(0) = 3 ,  g(3) = 9   and   g(9) = 20 ,  what is   f( f(9) ) ?

 

If     g(x) = f-1(x)     then we can take  f  of both sides of the equation to get     f( g(x) )  =  x

 

Since  f( g(x) )  =  x  ,

 

f( g(3) )  =  3

                        And we know   g(3)  =  9   so we can substitute  9  in for  g(3)

f( 9 )  =  3

 

Again since  f( g(x) )  =  x  ,

 

f( g(0) )  =  0

                        And we know   g(0)  =  3   so we can substitute  3  in for  g(0)

f( 3 )  =  0

 

So we have found....

 

f( f(9) )   =  f( 3 )  =  0

 Jun 15, 2019
 #2
avatar
+1

\(Tysm\)

Guest Jun 15, 2019
 #4
avatar+25344 
+4

 Please help! Do not know hot to solve

 

\(\begin{array}{|rcl|rcl|} \hline g(x) &&& f(x)&=&g^{-1}(x) \\ \hline g(-15)&=&0 & f(0)&=&-15 \\ g(0)&=&3 & f(3) &=& 0 \\ g(3)&=&9 & f(9) &=& 3 \\ g(9)&=&20 & f(20) &=& 9 \\ \hline \end{array} \)

 

\(\mathbf{f(f(9))} = f(3) \mathbf{= 0} \)

 

laugh

 Jun 17, 2019

9 Online Users

avatar
avatar