Find the largest x-value at which the graphs of \(f(x)=e^{3x^2-|\lfloor x \rfloor|!}+\binom{22+735235|\lfloor x \rfloor |}{2356}+\phi(|\lfloor x \rfloor|+1)+72x^4+3x^3-6x^2+2x+1\) and \(g(x)=e^{3x^2-|\lfloor x \rfloor|!}+\binom{22+735235|\lfloor x \rfloor |}{2356}+\phi(|\lfloor x \rfloor|+1)+72x^4+4x^3-11x^2-6x+13\) intersect, where \(\lfloor x \rfloor\) denotes the floor function of x, and \(\phi(n)\) denotes the sum of the positive integers \(\le\) and relatively prime to n.

qwertyzz Mar 18, 2020